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« Intelligence: “ability to learn, understand and think”
(Oxford dictionary)

« Artificial Intelligence: is the study of how to make
computers make things which at the moment people do
better.

«  Agent: Agents in Al sense the environment through
sensors and act through actuators with properties like
knowledge, belief, intention etc

*  Logical Reasoning: It is a form of thinking in
which premises and relations are used in rigorous
mannerto infer conclusions.

. Examples: Speech recognition, Smell, Face, Object,

Intuition, Inference, Learning new skills.
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What 1s Machine Learning(ML)?

ML i1s a branch of Al, focuses on use of data and
algorithms to imitate the way that humans learn
gradually improving accuracy.
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*  Mundane(repetitive) Tasks:
— Perception
* Vision
* Speech
— Natural Languages
« Understanding
* Generation
+ Translation

— Common sense reasoning
— Robot Control
*  Formal Tasks
— Games : chess, checkers etc
— Mathematics: Geometry, logic,Proving properties
of programs
«  Expert Tasks:
— Engineering ( Design, Fault finding, Manufacturing
planning)
— Scientific Analysis
— Medical Diagnosis
— Financial Analysis
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* Logical AI — In general the facts of the specific
situation in which it must act, and its goals are all
represented by sentences of some mathematical
logical language

* Search — Artificial Intelligence programs often
examine large numbers of possibilities — for
example,moves in a chess game and inferences by
a theorem proving program

+ Pattern Recognition — When a program makes
observations of some kind, it 1S often
planned tocompare what it sees with a pattern.
For example: a vision program may try to match a
pattern of eyes and a nose in a scene in order to
find a face
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* Representation — Usually languages of
mathematical logic are used to represent the facts
about the world.

* Inference — Others can be inferred from some
facts. For example, when we hear of a bird, we
infer that it can fly, but this conclusion can be
reversed when we hear that it is a penguin.

* Common sense knowledge and Reasoning —
Thisis the area in which AI is farthest from the
human level, in spite of the fact that it has been an
active research area since the 1950s.
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* Learning from experience — There are some rules
expressed in logic for learning. Programs can only
learn what facts or behaviour their formalisms can
represent.

* Planning — Planning starts with general facts about
the world (especially facts about the effects of actions),
facts about the particular situation and a statement of a
goal.

« Epistemology — This is a study of the kinds of
knowledge that are required for solving problems in the
world.

*  Ontology — Ontology is the study of the kinds of
things that exist. In Al, the programs and sentences
deal with various kinds of objects and and what their

*  basic properties are.
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*  Heuristics — A heuristic is a way of trying to
discover something or an idea embedded in a
program. The term is used variously in Al. Heuristic
functions are used in some approaches to search or
to measure how far a node in a search tree seems to
be from a goal. Heuristic predicates that compare two
nodes in a search tree to see if one is better than the
other, 1.e.

constitutes an advance toward the goal.

*  Genetic programming — Genetic programming 1s
an automated method for creating a workingcomputer
program from a high-level problem statement of a
problem. Genetic programming starts from a high-
level statement of ‘what needs to be done’ and
automatically creates a computer program
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* m Machine vision

* m Speech understanding

« m Touch ( tactile or haptic) sensation
L Robotics

O Natural Language Processing

« m Natural Language Understanding
« m Speech Understanding

« m Language Generation

* Machine TranslationPlanning

«  Expert Systems Machine Learning Theorem
Proving Symbolic Mathematics

Game Playing

[ O O
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« Intelligence requires Knowledge

«  Knowledge poseses less desirable properties
such as:

— Voluminous (very lengthy)

— Hard to characterize accurately

— Constantly changing

— Differs from data that can be used

* Al technique is a method that exploits
knowledge that should be
represented in such a way that:

— Knowledge captures generalization

— It can be understood by people who must
provide it

— It can be easily modified to correct errors.
— It can be used in variety of situations
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* Computer beats human in a chess
game.

* Computer-human
conversation using
speechrecognition.

* Expert system controls a spacecratft.

* Robot can walk on stairs and hold a
cup of water.

* Language translation for webpages.

* Home appliances use fuzzy logic.
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1.1 The first approach (simple)

The Tic-Tac-Toe game consists of a
nine element  vector  called
BOARD; 1t represents the numbers

1 to 9in three rows. - 6 3 3 3

71819

An element contains the value O for blank, 1
for X and 2 for O. A MOVETABLE
vector consists of 19,683elements (39) and
1S needed where each element 1S a nine
element vector. The contents of the vector
are especially chosen to help the algorithm.
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The algorithm makes moves by pursuing the
following: B X QO
A\PA

a,

1. View the vector as a ternary number.

! 2
Convert it to a dechmal number. 43 \

2. Use the decimal number as ann

MOVETABLE

and access the vector.

3. Set BOARD to this vector indicating
how the board looks after the move.
This approach 1s capable in time but it
has several disadvantages. It takes more
space and requires stunning effort to
calculate the decimal numbers. This
method is specific to this game and
cannot be completed.
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Program-1: Tic-
Tac-Toe

(@) “« (&)
(@) j_ o
) ol oo
,,g[’ggf_%;, =« Min
=\
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o It takes a lot of space to store he table that specifies the comect move to make from each |
position,

o Someone wil have to do a lot of work specifying al the entries in the movelable.

¢ [uis very unlikely that all the required movetable entries can be determined and entered withou
BITOrs,

¢ [fwe want o extend the gane, say to three dimensions, we would have to start from scratch, and i
this echnique would no longer work a al, sinee 3* board posicons would have to be stored,

. Skl gt

overwhelming present computer memories
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The structure of the data is as before but we use

2 for a blank, 3 for an X and 5 for an O. A

variable called TURN indicates 1 for the first

move and 9 for the last. The algorithm consists

of three actions:

MAKE?2 which returns 5 if the centre square is

blank; otherwise it
\;J\ returns any blank noncorner square, i.e. 2, 4, 6 or
8.

‘\ ~ « POSSWIN (p) returns O if player p cannot

f)\

win on the next move and otherwise returns

Valu
0=bl
3=X
5=0

the number of the square thai_gives—a——————
R/c /D

w1nn1ng move.

« It checks each line using products 3*3*2=
{;\/ ¢ D 18 gives a win for X, 5*5*2=50 gives a win
for O, and the winning move is the holder of
the blank. GO (n) makes a move to square n
setting BOARDI[n] to 3 or 5.

* This algorithm is more involved and takes
longer but it is more efficient in storage
which compensates for its longer time. It
depends on the programmer’s sk}ill.
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The algorithm has a built-in strategy for each move it may have to make. It make
moves if it is playing X, the even-numbered moves if it is playing 0. The strategy for ea

Tums=]
Tun=2
Turn=3
Tum=4
Tum=3

Go(1) (upper left comer).

If Board[3] is blank, Go(5), else Go(l),

If Board ] is blank, Go(9), else Go(3).

If Posswin(X) 1s not 0, then Go(Posswin(X)) [1.¢., block opponent's w
If Posswin(X) is not 0 then Go(Posswin(X)) [i.¢., win] else if Possy
Go(Posswin(0)) [i.e., block win], else if Board|7] is blank, then
[Here the program 1 trying (o make a fork.]

Department of ISE, Atria I.T
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Tumsd 1 Posswin(O) i5 ot 0 then Go (Posswin(O) el f PosswinK) 1 not 0, then
GiolPosswin X)), ls Go(Make?)
Tume? I Posswin(X) 15 not 0 hen Go(Possw(X)), els 1f Posswin(0) is not 0, hen

(i

P )l goanywher s k.

Tumed 11 Posswin(0) is not 0 them Go(Posswin(0), el i Posswin(X) Is ot 0, then

(

——

P 5 0 nywere ht s Dok,

Timed S s T
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Program-2 (tic-tac-toe)
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Program-2 (tic-tac-
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Program-2 (tic-tac-toe)

Turn 9
V\;a(»oﬁef,%(_ T A— [ = = =
&l = | s)
- = =, =
T = =sT=] o
OR— =2 | S | S ——
. § =B — <, B R

Comments

This program is not quite s efficientin terms of time as the first one since it has (o check several conditions
before making each move, Butitis a lot more efficientin terms of space, It s also alot easier to understand the
program's straiegy or to change the strategy if desired. But the total strategy has still been figured out in
advance by the programumer. Any bugs in the programmer’s tic-tac-toe playing skill will show up in the
program’s play. And we still cannot generalize any of the program’s knowledge to a different domain, such as
three-dimensional tic-tac-toe.
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Program-2 tic tac toe
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oN oo
~d N L2
o O 4=

The numbering of the board
produces magic square: all rows,
columns and diagonals sum up to
15. Here both human(uses brain)
and machine(uses calculation) try
to win the game by trying to
make all rows or columns or
diagonal elements to 15
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Program-3 tic tac toe(magic square)

Human(mind) Machine(brain)
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Problem: problem can be caused
for different reasons and can
be solved in different ways. To
solve a particular problem we
need 4 things:

* Define problem precisely

* Analyze the problem

 Isolate and represent task knowledge
* Choose best solving technique
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Problem solving = searching for a
goal state

state space 1s a set of legal positions,
starting at initial state, using the set
of rules to move from one state to
another and attempting to end up in a
goal state.

Methodology of state space approach

1. Represent problem in structured form using
different states

2. Identify initial state
3. Identify goal state
4. Determine operator to for the changing state
5. Represent knowledge present in
the problem in convenientform
6. Start from initial state and search a path to

goal state
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The procedure for getting a solution for Al problem
canbe viewed as production system. Its
components are:

A set of rules: Left side determines
applicability ofrule(pattern) and right side
describes operation.

Knowledge base: Contains information appropriate

for a particular task.

Control strategy: Specifies the order in which
rules are implemented. First requirement is
through motionand second requirement is should
be systematic.

A rule applier: production rule is shown below:
if (conditin)
then
consegence

or
action
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1. Represent the initial state of the
problem

2. If the present state is goal state then
go to step) else
step3.

3. Choose one of the rules that
satisfy the rules that satisfy the

present state, apply it and
change the stateto new state.

4. Go to step2

9. Print “Goal 1s reached” and indicate
the search path
from 1nitial state to goal state.

6. stop
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1. Forward Production system:
-moving from initial state to goal state

-where there are number of goal
states and only one 1nitial state, it 1s
advantage @ to  use  forward
production system.

2. Backward Production system:
-moving from goal state to initial state

-If there 1s only one goal state
and many 1nitial states, it 1s
advantage to use backward
productionsystem.
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Categories of
production systems(4)

Partially commutative Theorem proving Robot navigation
Not partially Chemical synthesis Bridge

commutative
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Water Jug problem:

A Water Jug Problem: You are given two jugs. a 4-gallon one and a 3-gallon one. Neitl

markers on it. There is a pump that can be used to fill the jugs with water. How can you g
water into the 4-gallon jug?

The state space for this problem can be described as the set of ordered pairs of integer
0,1,2, 3, ordand vy =0, 1, 2, or 3; x represents the number of gallons of water in the
represents the quantity of water in the 3-gallon jug. The start state is (0. 0). The goal s
value of n (since ..the problem does not specify how many gallons need to be in the 3-ga
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Uniformed search: will not

have domain knowledge,
operates in brute force way

and no information about
search space

Informed search: knows domain
knowledge, find solution efficiently,
operates heuristic way(guarantees
good solutionnot best), can solve
complex problems.

Uninformed(Blind search) Informed(Heuristic)

BFS Best fit

Uniform cost A*

DFS AO*

Depth limit Problem reduction
Iterative deeping DFS Hill climbing

Bidirectional search
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— Most common search strategy
— Searches breadth wise

— Searches from root and expands to all
SUCCEeSSOrs

— Implemented using FIFO(queue) data
structure

Advantage: will provide solution

Disadvantage: requires lot of memory to

expand
= BYs )
. (A & s e Concflenity i A
K b LNJI ( = ’l(,)! oY PR e 7 EU 7
— A s A
,,_/ S (E ( €))— Aarar ool 2 ~ (&) 1+ 6> 54 R
C.(), \ il X Comes .,‘.,»] Qf )
/ —’“X\ (j - }¢,~.‘J 3 -
o (_I/ =/ & =5 e C amf\olt (b(\ )%:-\.L‘:‘J‘ \
Al ) B Jadd & BFES A o) )
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BFS Algorithm

Breadth First Search

Zo solve the water Jug problem systemically construct a tree with limited states as its o
rir;erate all the offspring and their successors from the root according to the rules until 50me t
Produces a goal state. This process s called Breadth-First Search. o

Algorithm;
1) Creat i
2; U::, e a variable .caHed NODE_LIST and set it to the initial state
a g:al state is found or NODE LIST is empty do: .
8. Remove the first element " :
o nt from NODE_LIST and call jt E. If NODE LIST was empty
b. Foreach wa -
y that each ryle can
: match the state described i :
,-;L ’?;::Iy the rule to generate a new state fi
m,. & : n:!/ew state is goal state, quit and return this state
Ise add the new state to the end of NODE LisT

(00 ]

mm

One Leve| of 4 8.
First Searchf - eefcadzh.

K]
TWo Levels of g Breqdeh.

i st Search Tree

The da': eheiian
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— Recursive algorithm

— Starts with root and follows to its greatest
depth

— Uses

LIFO
(stack) data
structure
Advantage:
requires less
memory

Disadvantage: no guarantee of finding
solution and can goto infinite depth

- u»o . - Qm&k"}rﬂkﬁj -{n..«h-n,, Fti‘(n :

— PR Q&«((JZ ST S VO

e e Sl SPeia |
OF 5 vir\) newn . | (5()
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TCw) = 14 w24 w4 - . ""1‘0(;'5:
mio*w&é-ﬂf*kat a»J “O-Q:

SPrte. Grdunlty 1
. O("M> b = faeh

Beo b ddar o a bl TRER TR M mses e e

Em - ’5
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DFES Algorithm

Depth First Search
There Is another way of dealing the \Water Jug Problem. One should construd s Vingle branched

tree utility yields a solution or until a decivion terminate when the path is reaching a dead end 1o
the previous state. If the branch is larger than the Pre-specified unit then backtracking occurs (o
the previous state sO as 1O create another path, This Is called Chronological Backtracking because
the order in which ffeps are undone depends only on the termporal sequence in which the steps
were originally made. This procedure is called Depth-First Search.

Algorithm:
1) i the initial state is the goal state, Quit return success.
2) Otherwise. do the following untll success or fallure I signaled
a. mwm te a successor E of the Initial state, if there are No more tuccessors. dgral
b. Call Depth-First Search with E as the initial state
< ¥ success is returned. signal success. Otherwise continue In this loop.

(o
The data structure used in this algorithm is STACK. e
Explanation of Algorithm: [—“o‘,"'
~  Initially put the (0,0) state in the stack. — e
—  Apply production rules and generate the P s
new state. ( 4.3 ]
~ M the new states are not a goal state, A Depth -First Search I
(not generated before and no

expanded) then only add the state to top of the Stack.
~  If already generated state s he top of stack elements and
mmmW‘ '
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Heuristic search methods often
known as weak methodsbecause
they do not apply great deal of
knowledge.

WEAK METHODS:
a) Generate and Test

b) Hill Climbing(simple, steepest and
simulated Annealing)

c) Best First search
d) Problem reduction
e) Constraint satisfaction

f) Means-ends analysis
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Generate and Test

Example: searching a ball in a bowl
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Hill
Climbing(simple,steepest)

Algorithm: Simple Hill Climbing

I, Evaluate the initial state. If it is also a goal state, then return it and quit. Otherwise, continue with the
initial state as the current state.

2. Loop until a solution is found or until there are no new operators left to be applied in the current state:
(a) Select an operator that has not yet been applied to the current state and apply it to produce a new state,
(b) Evaluate the new state.

(i) If it is a goal state, then return it and quit.
(ii) If it is not a goal state but it is better than the current state, then make it the current state,
(iif) If it is not better than the current state, then continue in the loop.
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Algorithm: Steepest-Ascent Hill Climbing
1. Evaluate the initial state. If it is also a goal state, then return it and quit, Otherwise, continue with the
initial state as the current state.
2. Loop until a solution is found or until a complete iteration produces no change to current state:
(a) Let SUCC be a state such that any possible successor of the current state will be better than SUCC.
(b) For each operator that applies to the current state do:
(i) Apply the operator and generate a new state.
(ii) Evaluate the new state. If it is a goal state, then return it and quit. If not, compare it to SUCC.
If it is better, then set SUCC to this state. If it is not better, leave SUCC alone.
(c) If the SUCC is better than current state, then set current state to SUCC.
Both basic and sieepest-ascent hill climbing may fail to find a solution. Either algorithm may terminate not
by finding a goal state but by getting 1o a state from which no better states can be generated, This will happen

if the program has reached either a local maximum, a plateau, or a ridge.

Local maximum: a state better than all its
neighbours

Plateau: a flat area where neighbouring states
has the same value

Ridge: a area higher than surrounding areas.
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In simulated Annealing some hill
down movements can bemade. In
physical annealing:

-Physical substances are melted
and gradually cooled untilsome
solid state 1s reached.

-The goal 1s to produce a minimal
energy state

-Annealing schedule: if

temperature 1s lowered
sufficientlyslowly, then goal

will be attained

-The probability for a transition P=e
A E/KT

_ A Eis positive energy level

_T is temperature
_K is boltzman constant
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Algorithm: Simulated Annealing
1. Evaluate the initial state. If it is also a goal state, then return it and quit. Otherwise, continue with the
initial state as the current state,
Initialize BEST-SO-FAR to the current state.
Initialize T according to the annealing schedule.
Loop until a solution is found or until there are no new operators left to be applied in the current state.
(a) Select an operator that has not yet been applied to the current state and apply it to produce a new
state.
(b) Evaluate the new state. Compute
AE = (value of current) — (value of new state)

o [f the new state is a goal state, then return it and quit.

o [fitis not a goal state but is better than the current state, then make it the current state. Also set
BEST-SO-FAR to this new state.

o If it is not better than the current state, then make it the current state with probability p as
defined above. This step is usually implemented by invoking a random number generator to
produce a number in the range [0,1]. If that number is less than p’, then the move is accepted.
Otherwise, do nothing.

(c) Revise T as necessary according to the annealing schedule.
5. Return BEST-SO-FAR, as the answer.

'..oJ o

&

Ex: current state p=0.45 and new state p’=0.36 if
(p>p’) move is rejected
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It always selects the path
that appears best at that
moment

It’s a combination of DFS and BFS

It uses heuristic function: h(n)<h*(n)
and searches

H(n)=heuristic cost
H*(n)=estimated cost
It 1s implemented by priority queue
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1. Place the starting node into the OPEN list

2. If the OPEN list is empty, stop and return
failure
3. Remove node n from OPEN list that has

lowest value of h(n) and
place into the CLOSE list.

4. Expand node n and generate succors of
node n

9. Check each successor of node n
and find whether node is a goal
node or not. If any successor
node 1s a goal node, then return
success and terminate else
proceed to step 6.
6. For each successor node check if node has
been in OPEN or
CLOSE list. If it 1s not in both, then add to
OPEN list.

1. Return to step2.

Department of ISE, Atria I.T Page 47



Artificial Intelligence and Machine Learning 18CS71

Advantage: more efficient than BFS and DFS
Disadvantage: can stuck in loop as dfs
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o A search algorithm finds
shortest path through the
search space using heuristic
function h(n)

o Jtuses h(n) and cost to reach the node
n from start
state g(n)

o Provides optimal results faster
F(n)=g(n)+h(n)

F(n): estimated cost

g(n): cost to reach node n from start state
h(n): cost to reach node n to goal state
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Place the starting node in the OPEN
list

Check if open list 1s empty or not, if
it 1s empty return

failure and stop

Select node from open list,

which has smallest value of
evaluation function (g+h), if

node n 1s goal node then

return success and stop,

otherwise

Expand node n and generate all its

successors and put
n in CLOSE list

For each successor n, check n in
already in OPEN or
CLOSED list

If not compute evaluation function for
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n’ and place 1nto
OPEN list.
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3. Else i1f n’ 1s already in OPEN
and CLOSED then it shouldbe
attached to the back pointer which
reflects the lowest g(n’) value

6. Return to step2

Advantage: best algorithm, optimal
and complete, solvesvery complex
problems

Disadvantage: not practical for very large
scale problems.
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Means Ends Analysis

Algorithm: Means-Ends Analysis (CURRENT, GOAL)

I. Compare CURRENT to GOAL. If there are no differences between them then return,
2. Otherwise, select the most important difference and reduce it by doing the following until success or
failure is signaled:

(a) Select an as yet untried operator O that is applicable to the current difference. If there are no such
operators, then signal failure,

(b) Attempt to apply O to CURRENT. Generate descriptions of two states; O0-START, a state in which
0's preconditions are satisfied and O-RESULT, the state that would result if O were applied in 0-
START.

(c) If
(FIRST-PART &« MEA(CURRENT, O-START))
and
(LAST-PART & MEMO-RESULT, GOAL))
are successful, then signal success and return the result of concatenating
FIRST-PART, O, and LAST-PART.
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Constraint satisfaction
problem (CSP)

Algorithm: Constraint Satisfaction

I. Propagate available constraints. To do this, first set OPEN to the set of all objects that must have values

assigned to them in a complete solution. Then do until an inconsistency is detected or until OPEN is

emply:

(a) Select an object OB from OPEN. Strengthen as much as possible the set of constraints that apply
to OB.

(b) If this set is different from the set that was assigned the last time OB was examined or if this is the
first time OB has been examined, then add to OPEN all objects that share any constraints with OB.

(¢) Remove OB from OPEN.

If the union of the constraints discovered above defines a solution, then quit and report the solution.

If the union of the constraints discovered above defines a contradiction, then return failure.

If neither of the above occurs, then it is necessary to make a guess at something in order to proceed. To

do this, loop until a solution is found or all possible solutions have been eliminated:

(a) Selectan object whose value is not yet determined and select a way of strengthening the constraints
on that object.

(b) Recursively invoke constraint satisfaction with the current set of constraints augmented by the
strengthening constraint just selected.
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Module-2

Al part and ML part
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Knowledge
Representation Issues

Representation and Mappings:

To solve complex problems in AI we need large
amounts of knowledge and mechanisms for
manipulating that knowledge. Different ways of
representing the knowledge:

-Facts(truths)
-Representation of facts

-Structuring both(knowledge level(facts), symbol
level(representation of facts)
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Mappings between facts and

Representation

-———'—»— :
Facts iote

Forward representation: mapping from
facts torepresentation

Backward representation: mapping from
representationto facts.

Mapping functions from English
sentences torepresentation and back to
sentences.
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Knowledge representation
schemes

There are 4 types of knowledge
representationschemes:

 Relational
* Inheritable
 Inferential

e Declarative
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Relational knowledge

r Playcr Hcig ht Weigha Bats-Theows
| Hank Aaron -0 150 Right-Righit
Willie Mayx< S5-10 170 Right-Right
Babe Ruth 6-2 215 Len-Len
Ted Williauns 6-3 205 Lefi-Right
player_info{ ‘hank asron”, “6-0°. I80right-right).

« Made up of objects with attributes and
values

« Associates elements from one
domain toanother

« Mapping of elements among
differentdomains is possible
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Inheritable Knowledge

L] T height — f@
height ,___'
o

eqgual to bats [Baseball-J— D atting-
handed Player — AL%O
Latting / Qo
~avera .
-T106 J—- Se Pilehor =P, batting-averac
[G58]) [ Fioider } e Ty

gu' mbs tezaaery T "::::a 9'::;‘: ;eo_‘\:;::;_n 3 e
/:"\ arwn > [Resa  — T
Objects must be organized into classes andclasses
must be arranged in generalizationhierarchy.

« Elements inherit attributes from their parents
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Inferential knowledge

ixample: 1. Tommy is a doy

dog (Tommy)

All dogs are animals
vx dog (x) s animal (x)
3. All animals either live on land or in wates
X animal (x) » live (x, Iand) v live (x. water)

« Itis a powerful form of inference.

« Sometimes traditional logic is
necessary todescribe inferences

« Itis used to generate new
knowledge fromgiven knowledge
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Declarative/procedural
knowledge

v Example: Procedural Knowledge as Rules

If: Internal marks is minimum of 12 out of 20 and external marks is 35% of 80. i.c.. 28, leads
10 40% of 100 marks
Then: Result of the subject is pass - E grade

* These are represented as small
programs thatknow how to do specific
programs

« Commonly used
technique in this is
production rules.
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*Issues in knowledge representation

a) Important attributes

b) Relationships among
attributes

c) Choosing the granularity of
representation

d) Representing sets of objects

e) Finding the right structures
as needed
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a) Important attributes

There are 2 attributes that are
basic and common and occur in

almost every problemdomain.
They are:

e [S-A
e Instance
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b) Relationships among
attributes

There are 4 important relationships
that existamong attributes. They
are:

 Inverses

 EXistence in an IS-A hierarchy

« Techniques for reasoning
about values

» Single valued attributes
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Inverses
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IS-A hierarchy of
attributes

For example: the attribute height is
actually a specialization of more general
attribute called physical-size which is in
turn a specialization of physical-
attribute.
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Techniques for reasoning about values

« Reasoning system must reason
about values ithas not been
given explicitly.

« Examplel: the age of a
person cannot begreater
than age of their parents

« Example2: height must be
measured in a unitof length
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Single valued
attributes

Example: a baseball player can, at any
one time, have only a single height and
be a member of only one team.
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C) Choosing the granularity of

representation
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d) Representing set of
objects

There are 2 ways to
represent a set and its
elements.

« Extensional definition: list the
members

Ex: set of sun’s planets on which
people live is
{earth}

+ Intensional definition: true or
false
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Ex: {x:sun_planet(x) A
human_inhabited(x)}
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e) Finding right
structures as needed
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Predicate Logic

Predicate logic is used to represent
knowledge.

« Logic is a language for reasoning, a
collectionof rules.

 Predicate is a truth assignment given
for a particular statement which is
either true orfalse. Logic symbols used
in predicate logicare:
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Demorgan’s laws in
Predicate Logic

DE Morgan’s Laws in Predicate logic
ql( ‘18) —
(aVb)= "aA™b

(aAb)= "aV b
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Predicate logic
contd.

a) The balls color is red: color(ball,red)

b) Rohan likes bananas: likes(rohan,
bananas)

c) Raju likes rani: likes(raju,rani)

d) Raju likes everyone

e) Someone likes someone

f) Someone likes everyone

g) Everyone likes someone

h) Everyone is liked by someone

i) Someone is liked by everyone

j) Nobody likes everyone

k) Every gardener likes sun:

) All purple mushrooms are poisonous

m) Everyone loves everyone
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Representing facts with predicate logic

1) Marcus is a noun and man is predicate or
marcus is an mstance of class

ule: (y) A try_assassmate(x Y) = -loyal_to(x,y)
try_assacinate(Marcus, Ceaser)

'to Ceaser by backward substitution
4. =loyal_to(Marcus, Ceaser)
T
(Marcus) A Ruler(Ceaser) A Try_assacinate(Marcus, Ceaser)
6. 1
7. Person(Marcus) A Ruler(Ceaser)
8. 1
9. Person(Marcus)
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Q. Prove that Marcus is not loyal to

Ceaser
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Computable Functions and Predicates

It would be extremely inefficient to store
explicitly a large number of statements, so to

1. Marcus was a Man

2. Marcus was a Pompeian

3. Marcus born in 40 AD

4. All men are mortal

5. All Pompeians die

6. No mortal lives
VX, VitV

7. Itis now 1991

8. Alive means

compute easily we need computable
predicates.
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Q. Prove that Marcus
Is dead
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The Unification
Algorithm

1. Initial predicate symbols must match.
2. For each pair of predicate arguments:

- Different constants cannot match

- A variable may be replaced by a constant

- A variable may be replaced by another
variable

- A variable may be replaced by a
function as longas it does not contain
an instance of the variable

- When attempting to match 2 literals,
all substitutions must be made to the
entire literal
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Unification Algorithm
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Unification
Resolution

Department of ISE, Atria IT Page 85



Artificial Intelligence and Machine Learning 18CS71

Representing knowledge
using Rules

Procedural V/s Declarative

Procedural knowledge

Knowledge is embedded in
Kknowledge itself

» Answers "what can you
do™?
» Demonstrated using nouns

> Relies on action words or
verbs

> Ability to carry out actionsto complete a task
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Procedural V/s
Declarative contd.

Example

1. Man(marcus)

2. Man(ceaser)

3.  VX: man(x)—person(x)
4. Person(cleopatra)

Statements 1,2,3 are procedural
and 4 isdeclarative
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Forward & Backward
Reasoning

Forward Reasoning
Reasoning forward from initialstate

>  Build a tree of move sequences with initialconfiguration
»  Generate next level of tree whose left side rules match the root node
»  Generate next level considering previous level whose left sides match

Continue until the goal state is generated
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Forward and Backward
Chaining

Forward chaining Rule Systems

. Want to be directed by

incoming data

. Rules of RHS assertions aredumped into the state andthe process repeats

. Matching is more complex

than backward chaining

. Example: sense heat near your hand and take away
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Logic Programming
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Difference between logic and

PROLOG representation

LOGIC

« Variables are explicitly
quantified

 Explicit symbols for AND(A)
and OR(V) are used

« P implies q is written asp—qg

Department of ISE, Atria IT Page 91



Artificial Intelligence and Machine Learning 18CS71

Example of logic and PROLOG
representation
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Example of Horn and
PROLOG

Shotronedhne B 5
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Matching

« The process of search to solve
problem beginswith appropriate
rules to generate new states

« Hence there should be a

matching betweencurrent
state and preconditioned rules. They
are

-Indexing

-Matching with variables

-complex and appropriate matching
-conflict resolution
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Indexing

One way to select applicable
rules is to do simple search
through all the rules. But there
are 2 problems with this:

-it will be necessary to use
large no of ruleswould be
inefficient

-it is not always immediately
obvious whether arule is satisfied
by particular state

Department of ISE, Atria IT Page 95



Artificial Intelligence and Machine Learning 18CS71

Approximate matching
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Matching with variables

One efficient many-many match algorithm
RETE (many rules arematched against
many elements). This gains efficiency
from 3 major sources:

v' Temporal nature of data: rules
do not alter the state
description completely

v' Structural S|m|Iar|ty in rules:

zervarrread . xX) N
’(I n((‘) e e j(lg:lar(,t)
cxrrai verr O rasx) ~

;nas — sprors(x)
rraczrarrzcaix) /\
Feline(x) /\ - tiger(x)

carnivoros(x) /A
has — stripes(x)

v" Persistence of variable binding consistency:

Department of ISE, Atria IT Page 97



Artificial Intelligence and Machine Learning 18CS71

1 Shot on realime 8 5G
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Conflict resolution
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Concept Learning(Machine

learning)

Machine learning is a type of Al allows
software applications to become more
accurate at predicting outcomes
without being explicitly programmed.

There are 3 types of machine learning:

-Supervised: Task driven(predict next
value)

-Unsupervised: Data driven(identify
clusters)

-Reinforcement: Learn from mistakes
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Concept Learning

Concept learning can be formulated as
a problem of searching through a
predefinedspace of potential hypothesis
(statement of prediction)for the
hypothesis that best fits the training
examples.
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A concept learning task

« Consider the example task of learning the
target concept
days on which my friend Aldo enjoys his
favorite water sport”

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High  Strong Warm Change No

4 Sunny Warm High Strong Cool Change Yes

« Table describes a set of examples , each
represented by a set of

attributes.

« The Enjoy sport indicates whether or not
Aldo enjoys his favorite
water sport on this day.

« The task is to learn to predict the value of
Enjoy sport for an
arbitrary day

- '?"indicate any value is acceptable
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and ‘P’ indicate no value is
acceptable.
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Concept Learning as
Search

The goal of this search is to find the
hypothesis that best fits the training
examples. The designer of the learning
algorithm implicitly defines the space of
all hypothesis.

-Find S: Finding a maximally
specific hypothesis algorithm

-Version space and the candidate
elimination algorithm
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Find — S Algorithm

Objective | To find most specific hypothesis in set of hypotheses, which is
consistent with positive training example.
Dataset Tennis data set: This data set contains the set of examples days
on which playing of tennis is possible or not, based on attributes
Sky, AirTemp, Humidity, Wind, Water and Forecast.

ML Supervised Learning-FIND-S Algorithm
Algorithm
Description | The FIND-S Algorithm is probably one of the simplest machine
learning algorithms.

Algorithm:
1. Initialize h to the most specific hypothesis in H
2. For each positive training instance X
e For each attribute constraint a;in h

If the constraint a;in h is satisfied by x
Then do nothing
Else replace a;in h by the next more general constraint
that is satisfied by x

3. Output hypothesis h
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Find-S Algorithm
Illustration

Step 1: Find-S

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport
1 Sunny Warm Normal Strong Warm  Same Yes
2 Sunny Warm High Strong Warm  Same Yes
3 Rainy Cold High Strong Warm Change No
4 Sunny Warm High Strong Cool  Change Yes
| h0=<0.2.2.2.9.2> |
% N S SN
a1l ,/// a2/ 83] a4\ ag\\‘ a}\‘\'»
=L o B} Y =
! x1 = <Sunny, Warm, Normal, Strong, Warm, Same> l
Iteration 1 I

\ h1 = <Sunny, Warm, Normal, Strong, Warm, Same> ]

Step 2: Find-S

' h1 = <Sunny, Warm, Normal, Strong, Warm, Same> |

x2 = <Sunny, \Warm./ﬂigh, Stfong. Wafm, Séme> ‘

rara /

h2 = <Sunn'y, War-m, ?., Stror:g, Wa'rm, Sar;|3> '
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Find-S Algorithm cont.

Iteration 3 Ignore h3 = <Sunny, Warm, ?, Strong, Warm, Same>

Iteration 4 of Step 3: Find-S

h3 <Sunny, Warm, ?, Strong, Warm, Same>

Mteration 4. \\ \

x4=< Sunny, Warm, High, Strong, Cool, Change >

7

| Qutgui ] lh4 = <Sunny, Warm, 7, Strong,.

Department of ISE, Atria IT Page 107




Artificial Intelligence and Machine Learning 18CS71

Candidate Elimination Algorithm

Objective | To find most specific hypothesis in set of hypotheses, which i
consistent with positive and negative training example.

Dataset | Tennis data set: This data set contains the set of examples days on
which playing of tennis 1s possible or not, based on attributes Sky,
AirTemp, Humidity, Wind, Water and Forecast. The dataset has 14
Instances

ML | Supervised Learning- Candidate-Elimination Algorithm
Algorithm

Description | The Candidate-Elimination Algorithm computes the version space
containing all hypotheses from H that are consistent with an
observed sequence of training examples.
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Candidate Elimination
Algorithm

G € maximally general hypotheses in H
S € maximally specific hypotheses in H
For each training example d = < x, ¢(x) >
Case 1: If d is a positive example
Remove from G any hypothesis that is inconsistent with d
For each hypothesis s in S that is not consistent with d
* Remove s from S.
* Add to S all minimal generalizations h of s such that
* h consistent with d
* Some member of G is more general than h
* Remove from S any hypothesis that is more general than another
hypothesis in S
Case 2: If d is a negative example
Remove from S any hypothesis that is inconsistent with d
For each hypothesis g in G that is not consistent with d
* Remove g from G.
» Add to G all minimal specializations h of g such that
= h consistent with d
= Some member of S is more specific than h
* Remove from G any hypothesis that is less general than another
hypothesis in G
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Candidate Elimination Algorithm

Candidate Elimination Algorithm (works for
+ve and —ve examples)

1. Specific hypothesis(S) - P

2. General hypothesis(G) - ?

3.Version space (contradiction)

Step1l: Initialize G and S as most
general and specific hypothesis

Step2: for each example E
If E is positive (+ve):
Make specific hypothesis
more general (works like Find
S)Else
Make general hypothesis more specific
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Candidate Elimination Algorithm

I[llustration

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport
1 Sunny Warm Normal Strong Warm Same Yes
2 Sunny Warm High Strong Warm Same Yes
3 Rainy Cold High Strong Warm Change No
4 Sunny Warm High Strong Cool Change Yes
S ={<2, O, D, D, D, T>}
Gy ={<?,7? 2, 72,72, 7>}
S, = {<Sunny, Warm, Normal, Strong, Warm, Same>} Si\
G, ={<?, 2, 2, 72, 2 7> =1 e
\;
—
S, = {<Sunny, Warm, ?, Strong, Warm, Same>} TN T /
Go={<?2,72,2,7, 2, 7>} S
G
Tracel :

Training examples:
1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes
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Candidate Elimination Algorithm contd.

CANDIDATE-ELIMINATION Trace 1. Sy and Gy are the initial boundary sets corresponding to the most
specific and most general hypotheses. Training examples | and 2 force the § boundary to become
more general, as in the FIND-S algorithm. They have no effect on the G boundary.

l

{ <Sunny, Warm, ?, Strong, Warm, Same> )

2P

GO'GI’GZ: {(?,?,?.?.:o?>|

Training examples:
1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes

2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes
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Candidate Elimination
Algorithm contd.

Trace 2:

S$2:5 3: | | <Sunny, Warm, ?, Strong, Warm, Same> )

63. (<Sunny, 2, 2, 2, 2, 2> <? Warm, ?, 2, 2, 7> <2?, 2 7 2 2 Same>}

e

Ga: | (<2222 2 2> )

Training Example:
3. <Rainy, Cold. High, Strong. Warm_ Change>, EnjoySport=No
CANDIDATE-ELIMINATION Trace 2. Training cxample 3 is a negative exampiec that forces the

boundary to be specialized 1o G 3. Note several alternative maximally general hypotheses are inclus
in Gs.
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Candidate Elimination Algorithm contd.

Trace3 :

S 3: | {<Swrnrry, Warm, 7, Strong, Warm, Same>)

.

S a: { <Sunny, Warm, ?. Strong, ?, ?>}

G g: [ {<Swnny, 2, 2, 7, 2, 7> <? Warm, ?, 2, 2, 2>}

1

Gy [(<Sunny, ?, 2, 2, 72, 7> <?, Warm, 7,72, 7, ?> <2,2,2 72, 7, Same>)

Training Example:
4. <Swunny, Warm, High, Strong, Cool, Change>, EnjovSport = Yes

CANDIDATE-ELIMINATION Trace 3. The positive training example gencralizes the S bounda
S3 to Ss. One member of Gi must also be deleted, because it is no longer more general tha
boundary.
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Candidate Elimination
Algorithm contd.

Final Version Space:

S : [{<Sunny, Warm, ?, Strong, ?, 7>)

/1\ .

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, 7, 7, 7> <?, Warm, ?, Strong, ?, 7>

NN

G,‘ (<Sunny, ?, 2, 2, 2, 7>, <?, Warm, ?, ?, 7, 7>}

The final version space for the EnjoySport concept learning problem and training examples des
carlier.
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Inductive Bias
Remarks on CE and VS algorithms:

1. willthe CE algorithm gives us
correcthypothesis?

2. What training example should the learner
request next?

Inductive learning: From examples we derive
rules (feeding examples to machines)

Deductive learning: Already existing rules areapplied to
our examples
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Biased and Unbiased Hypothesis

Space

Biased Hypothesis space
Does not consider all types of

training examplesSolution:

include all hypothesis

Example:
sunny”warm”*normal”strong”*cool v ch
ange=yesUnbiased Hypothesis space

Providing a hypothesis capable of
representing set of allexamples

Possible instances: 3X2X2X2X2X2=96

Target concepts: 296 (huge and
practically not possible)
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Idea of Inductive Bias

« The learner generalizes beyond the observed training
examples to infer new examples.

« “>":Inductively inferred from

« Example: x>y: y is inductively inferred
fromx(predefined in the system)

The futility of Bias-free learning:

« Learning algorithm: L

« Training data: Dc={x,c(x)}

* New instance=Xi

« Represented as L(xi,Dc)

« (Dc”xi) > L(xi,Dc) ( L is inferred from existing system)

MODULE-3

ARTIFICIAL NEURAL
NETWORK

Department of ISE, Atria I.T
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TOPICS INCLUDED
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4.1.
INTRODUCTION
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What are ANNs2

 ANN is an information-processing model that
works by taking up the data from sensors as
input, apply conventional methods (activation
functions) to it and finally produce appropriate

results (solutions) out of it.

« To develop a computational device for modelling
just like the brain, to perform various tasks such
as

pattern-matching and classification,
optimization function, approximation, & data
clustering.

« ANN consists of 3 layers: input layer, hidden layer
and output layer.

« Input Layer: Consists of Input neurons, represented
as X1, X2,....... XN

 Hidden Layer: Consists of hidden neurons,
represented as Z1, Z2, Zk

« Qutput Layer: Consists of output neurons, represented
as Y1,Y2...... Ym
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 Neural network Jlearning methods provide a
robust approach to approximating real/-valued,
discrete

valued, and vector-valued target functions.
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4.1 INTRODUCTION

- Below figure shows the general
representation of an ANN with one hidden

layer at least.

o=

1. https://voutu.be/ aCCsR
Cw78g: Introduction:
Neuroanatomy Videolab
- Brain Dissections (6:05
Secs)

2. https://youtu.be/lapIT
VEQ6ew: Expressive
Aphasia - Sarah Scott -
Teenage Stroke

Department of ISE, Atria I.T
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Survivor

https://voutu.be/P
HQhCiVLRpE:
Creating Virtual
Humans: The
Future of Al

https://youtu.be/eAw

gBOSW-HQ4: Baby X
world showcase
comingto
TEDxAuckland 2013

https://youtu.be/yz
FW4-dvFDA
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4‘- 1- INTRODUCTION

« This model, the net input is clarified as:

14
yiTl = X1W1 + XoW» S + X, Wy = O..

Where 1 represents the ith processing
element. The activation function is applied
overit to calculate the output. The weight
represents the strength of synapse
connecting the input and output neurons.

A positive weight corresponds to an excitatory
synapse, and a negative weight

corresponds to an inhibitory synapse.

Some of the applications of ANN are: Face
recognition, Visual Interpretation, Speech
recognition, and learning robot control
strategies.
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4‘ C 2 . BIOLOGICAL
MOTIVATION

« The study of artificial neural networks

(ANNs) has been inspired in part by the
observation that biological learning
systems are built of very complex webs
of interconnected neurons.

Informally, artificial neural networks are
built out of a densely interconnected set
of simple units, where each unit takes a
number of real-valued inputs (possibly
the outputs of other units) and produces
a single real-valued output (which may
become the input to many other units).

Department of ISE, Atria I.T
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4.2. BIOLOGICAL

MOTIVATION

* Human brain consists of a huge
number of neurons, approximately
1011, Withnumerous

interconnections.

* A schematic diagram of a biological
neuron is shown in Fig:

Synapse
Axon
——
Nucleus Cell body o
(Soma)

o

Dendrites

Department of ISE, Atria I.T Page
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4.2. BIOLOGICAL
MOTIVATION

speed * A comparison could be
ade between

Processing Eig|0§%|pﬁ)é€t§?i@g]i§ faster than brain

nd Ar,risil?}lill;geineously. But, in general, t

Size and euTmﬁ%tabe)ﬂf] Eeurons in the brain is

Complexity , al
asieabdhR complexity of a biologica

Storage Capacity TO“Q\W%.QJ g[ﬁ%@lﬁ@m its interconnectic
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4.2. BIOLOGICAL
MOTIVATION

Tolerance BN- possesses fault tolerant capability, ANN has no fault tolerance.

information even when the inter

In case of AN, the information gets corrupted if the network interconne

Biological neurons can accept redundancies, which is not possible in Al

Control The control mechanism of ANN is very simple compared to that of a BN
Mechanism cannot be.

Bepartment of ISE, Atria I.T
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4‘. 3 . APPROPRIATE
PROBLEMS FOR
NEURAL NETWORK

LEARNING

I'Network
Learning is well-suited to
problems in which the

training data corresponds
to noisy, complex sensor

data,such as-i
cameras and microphones. M\
Automatic Vehic

AVI\N

InNeural Network

Bepartment of ISE, Atria I.T
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4.3.
APPROPR
IATE PROBLEMS FOR
NEURAL NETWORK
LEARNING

« ALVINN: A neural network learning based
steering autonomous vehicle.

« The ALVINN system uses Back-Propagation
Algorithm, to
* Learn
« Steer, an autonomous vehicle. (Shown in Fig: 1)

* Driving at the speed up to 70 MPH (113
KMPH)

* Fig: 2 shows, how the image of a fed forward
to 4 hidden units, connected to 30
output units.

« Network outputs encode the commanded
steering direction.

 Fig: 3 shows, weight values for one of the
hidden units in the network.

« The 30 x 32 weights into the hidden unit
are displayed in the large matrix, with
white blocksindicating positive weights, and
black indicating negative weights.
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* 4.3.
APPROPR
IATE PROBLEMS FOR
NEURAL NETWORK
LEARNING

* The weights from this hidden unit
to the 30 output units are
depicted bythe smaller
rectangular block. (Above, Fig: 3).

* As can be seen from these
output weights, activation of this
particularhidden unit encourages a
turn towards the left.
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4.3. APPROPRI
ATE
PROBLEMS
FORNEURAL
NETWORK
LEARNING

« The back-propagation algorithm or ANN is
appropriate for problems with the following
characteristics: (Explain with ALVINN example)

1. Instances are represented by many
attribute-value pairs (pixel values)

2. The target function output may
be discrete-valued, real-valued,
or a vector of severalreal-or
discrete-valued attributes.
(vector of 30 attributes—> steering

direction)
3. The training examples may contain
errors. (robust to training

data)(mostly in
beginning stage)

4. Long training times are
acceptable. (Training times can
range from a few seconds to many
hours)

5. Fast evaluation of the learned
target function may be required.
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(ALVINN applies its neural network
several times per second to
continually update its steering
command as the vehicle drives
forward.)

The ability of humans to understand the

e dtelgetf nction is not important.
at are the appropridte proble
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PERCEPTRONS

* A basic type of ANN system
based on a unit called a

perceptron.
« [llustrated in below figure:
Wh
Fig: A Perceptron

B36
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PERCEPTRONS

e A perceptron takes a
vector of real-valued
inputs, calculates a linear
combination of these
inputs, then outputs a 1 if
the result is greater than
some threshold and -1
otherwise.

* More precisely, given inputs x1
through xn, the output ofx1, . . .

) %)
computed by the perceptron is:

o{xy, ...

y = 1 if wo + w1x1 + wax>
»An} = 1 _1 otherwise

Department of ISE, Atria I.T Page
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4.4 PERCEPTRONS

* To simplify
notation, we
imagine the
constant input x0
= 1, allowing us to

write as: Z?:o :

* Or, in vector form as:

w -x = 0.

0

————

« However, for perceptron
function representation we write
as:

Department of ISE, Atria I.T Page
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PERCEPTRONS

 Learning a perceptron
involves choosing values
for the weights

* Therefore, the space H
candidate  hypotheses
considered in perceptron
learning is the set of all
possible real-valued
weight vectors. (except
imaginary numbers)

H={w | 0w e RrtH)

Department of ISE, Atria I.T
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REPRESENTATIONAL
POWER OF
PERCEPTRONS

* We can view the
perceptrons as representing
a hyperplane  decision
surface in the n-dimensional
space of instances (i.e.
points).

» The perceptron outputs a 1
for instances lying on one
side of the hyperplane and
outputs a -1 for instances
lying on the other side,

The decision surface represented by a
two-input perceptron.

Li
n

e

Bepartment of ISE, Atria I.T
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REPRESENTATIONAL
POWER OF
PERCEPTRONS

* A single perceptron can be used to
represent many Boolean functions.

* For ex: AND & OR function

Discuss,
how a

Problem Solvin
single

perceptron
can used to
represent
the
Boolean
Functions
such as
AND,OR.
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1 )
0 1 0 y)
0 0 1 0 1 1
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Calculated . Weights

i Target  Netinput  output jgktihgg;cs_ w wy b

S T G ;) 0 Aw Awy A6 (0 0 0)
EPOCH-1

] 1 1 1 0 0 ] ] 1 1 1 1

] 0 1 1 2 ] 0 0 0 1 1 1

0 1 1 1 2 I o 0 o 11 |

0 0 1 -1 1 1 0 0 1 1 1 0
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THE PERCEPTRON TRAININGRULE

« How to learn the weights for a single perceptron?

* Here the precise learning problem is to determine a weight
vector that causes the perceptron to produce the correct +1
output for each of the given training examples.

» Consider two: the perceptron rule and the delta rule (a variant
of the LMS rule used for learning evaluation functions).

« Why: They are important to ANNs because they provide the basis
for learning networks of many units.

Bepartment of ISE, Atria I.T Page 151
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THE PERCEPTRON TRAININGRULE

One way to learn an acceptable weight vector is to:

1 . Begin with random weights, then iteratively apply the perceptron
to each training example, modifying the perceptron weights
whenever it misclassifies an example.

2 . This process is repeated, iterating through the training examples
as many times as needed until the perceptron classifies all
training examples correctly.

3. Weights are modified at each step according to the perceptron
training rule, which updates the weight wi associated with
input x7 according to the rule: wi & wi
+ Awi

Bepartment of ISE, Atria I.T Page 152
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4.4.2. THE PERCEPTRON TRAININGRULE

Where:wi =n (t—0 ) xi

» So, why should this update rule converge towards successful
weight values?

« Consider a specific case, where a perceptron correctly classifies
training examples. So in this case, the error (£ —o ) = 0 > making
Awi = 0.

Here no weights are updated

Consider another case, where a perceptron outputs a -1, when t =
+1. Now, in order to make a perceptron output a +1, instead of -1,
the weights must be altered to increase the value of m - x.
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THE PERCEPTRON TRAININGRULE

« If xi > 0, then increasing wi will bring the perceptron closer to
correctly classifying
this example.

* Now, training will increase wi, as n and xi are all positive.

- Exifxi=0.8,7=0.1,t=1,and o = -1, then the weight
update will be:

Awi=n(t—o0)xi
>Awi=0.1(1+1)0.8
>Awi = 0.16

. On the other hand: if xi = 0.8, n = 0.1, t = -1, and o = 1, then
the weight update will be:

Awi=n(t—o0)xi
>Awi=0.1(-1+1)0.8
>4Awi =0
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GRADIENT DESCENT
RULE ANDDELTA
RULE

* Although the perceptron
training rule finds a successful
weight vector when the training
examples are linearly separable, it
can fail to converge if the
examples are not linearly
separable.

* A second training rule, called
the delta rule overcomes the
difficulty faced by perceptron
training rule.

* If the training examples are not
linearly separable, the delta rule
converges toward a best-fit
approximation to the target concept.

 The key idea behind the delta
rule is to use gradient-descent
to search the hypothesis space of
possible weight vectors to find

Bepartment of ISE, Atria I.T Page 155
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the weights that best fit the
training examples.
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GRADIENT
DESCENT RULE
ANDDELTA RULE

« This rule is important because
gradient descent provides the
basis for the Back Propagation
algorithm, which can learn
networks with many
interconnected units.

It is also important because
gradient descent can serve as the
basis for learning algorithms that
must search through hypothesis
spaces containing many different
types of continuously
parameterized hypotheses.

« The delta training rule is best
understood by considering the
task of training an
unthresholded perceptron; that
IS, a finear unitfor which the
output ois given by:

0 =m-Xx (x)

—
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GRADIENT
DESCENT RULE
ANDDELTA RULE

 In order to derive a weight learning rule
for linear units, let us begin by specifying
a measurefor the &raining error of a
hypothesis (weight vector), relative to the
training examples.

 Although there are many ways to define
this error, one common measure that will
turn out tobe especially convenient is

WE - =, Bgq

« Where D is the set of training examples, t,4
is the target output for training example

d, and oy, is the output of the linear unit for

training example d.

» By this definition, E(w ) is simply half the
squared difference between the target
output tzand
the linear unit output o4, summed over all
training examples.

« Here we characterize E as a function of
w, because the linear unit output o
depends on thisweight vector.
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GRADIENT
DESCENT RULE
ANDDELTA RULE

 In order to derive a weight learning rule
for linear units, let us begin by specifying
a measurefor the &raining error of a
hypothesis (weight vector), relative to the
training examples.

 Although there are many ways to define
this error, one common measure that will
turn out tobe especially convenient is

WE - =, g
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« Where D is the set of training examples, t,4
is the target output for training example

d, and o, is the output of the linear unit for

training example d.

» By this definition, E(w ) is simply half the
squared difference between the target
output tzand
the linear unit output o4, summed over all
training examples.

« Here we characterize E as a function of
w, because the linear unit output o
depends on thisweight vector.

MODULE -4

BAYESIAN LEARNING
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INTRODUCTION

Bayesian reasoning provides a probabilistic approach to
inference. These are governed by probabilistic distributions and
optimal decisions can be made by reasoning.

Bayesian learning methods are relevant to study of machine
learning for two different reasons.

» First, Bayesian learning algorithms that calculate explicit
probabilities for hypotheses, such as the naive Bayes
classifier, are among the most practicalapproaches to certain
types of learning problems

« The second reason is that they provide a useful
perspective for understanding many learning algorithms
that do not explicitly manipulate probabilities.
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Features of Bayesian Learning Methods

 Each observed training example can incrementally
decrease or increase the estimated probability that a
hypothesis is correct. This provides a more flexible
approach to learning than algorithms that completely
eliminate a hypothesis if it is found to be inconsistent
with any single example

» Prior knowledge can be combined with observed data to
determine the final probability of a hypothesis. In
Bayesian learning, prior knowledge is provided by
asserting (1) a prior probability for each candidate
hypothesis, and (2) a probability distribution over
observed data for each possible hypothesis.

» Bayesian methods can accommodate hypotheses that make
probabilistic predictions

 New instances can be classified by combining the
predictions of multiple hypotheses, weighted by their
probabilities.

« Even in cases where Bayesian methods prove
computationally intractable, they can provide a standard
of optimal decision making against which other practical
methods can be measured.
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Practical difficulty in applying Bayesian methods

 One practical difficulty in applying
Bayesian methods is that they
typically requireinitial knowledge
of many probabilities. When
these probabilities are not
known in advance they are often
estimated based on background
knowledge, previously available
data, and assumptions about the
form of the underlying
distributions.

« A second practical difficulty is the
significant computational cost
required to determine the Bayes
optimal hypothesis in the general
case. In certain specialized
situations, this computational cost
can be significantly reduced.
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BAYESTHEOREM

Bayes theorem gives the probability of

an event based on prior knowledge of
conditions.P(A/B)=[P(B/A).P(A)] / P(B)

P(A/B)= hypothesis;

P(B/A)=likelihood;

P(A)=prior;

P(B)=marginal Proof

of Bayes theorem:

P(A/B)=P(ANB)/P(B). So

P(ANB)=P(A/B).P(B) -----========mmmm e e oo oo eme.
P(B/A)=P(BNA)/P(A). So

P(BNA)=P(B/A).P(A) -=-==========mmmmmmm e oo
LHS are equal

therefore RHS are

also equal

P(A/B).P(B)=P(B/A).P

(A)

Hence P(A/B)=[P(B/A).P(A)] / P(B)
Terms:

A=hypothesis; B=given data;

P(A/B)=Finding probability of hypothesis
when probability of training example is given.
P(B/A)=Finding probability of given data
when provided with probability of hypothesis
that is true.
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BAYESTHEOREM

Bayes theorem provides a way to
calculate the probability of a
nypothesis based on its prior
orobability, the probabilities of
observing various data given the
nypothesis, and the observed data
itself.

Notations

« P(h) prior probability of h,
reflects any background
knowledge about the chancethat
h is correct

« P(D) prior probabifity of D, probability
that D will be observed

« P(D|h) probability of observing D
given a world in which h holds

« P(h|D) posterior probability of h,
reflects confidence that h holds
after D has beenobserved
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Bayes theorem is the cornerstone
of Bayesian learning methods
because it provides a way to
calculate the posterior probability
P(h/D), from the prior
probability P(h), together with
P(D) and P(D(h).

Bayes Theorem:

P(hID) — P(D|h)P(h)

P(D)

P(h [D) increases with P(h) and with
P(D/h) according to Bayes theorem.
P(h | D) decreases as P(D) increases,
because the more probable it is that
D will be

observed independent of A, the less
evidence D provides in support of A.
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Example on Bayes Theorem

Q. What is the probability that person that
person has disease dengue with neck pain.
Solun:
Given:

80% of time dengue

causes neck

pain:p(a/b)=0.8

P(dengue-

b)=1/30,000: p(b)=1/30,000
P(neck pain-a)=0.2: p(a)=0.02

<" ——0oCoKOoTO0 T

5 O w = MO ~+ Q
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S OWw-=S Mo || O

n v =

O CcWQ S O QA

P(b/a)=[p(a/b) p(b)] / p(a)
=[0.8 * 1/30,000] / 0.02
=0.00133
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Maximum a Posteriori (MAP) Hypothesis

fn many Iearg scenarlos e
earne con5| some set'q
candidat y|?_ esesH and |s
Interested in’ Tinding t e most

probable hypothesis A €Hgiven

e Sy Sl A AESh
ca ed a l}ll1gx1mum 3/ P

posteriori (MAP) hypothesis.
 Bayes theorem to calculate the posterior

probability of each candidate hypothesis

IS Amap

is @ MAP hypothesis provided

hyrap = argmax P(h|D)
heH

P(D|h)P(h)

= argmax

heH P(D)
= argmax P(D|h)P(h
heH

* P(D) can be dropped, because it is a
constant independent of h
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Maximum Likelihood (ML) Hypothesis

In some cases, it is assumed that
every hypothesis in H is equally
probable a priori
(P(h;) = P(h;)for all h;and hjinH).
In this case the below equation can
be simplified and need only consider
the term
P(D [ h) to find the most probable
hypothesis.
hyrap = argmax P(D|h)P(h)
heH

the equation can be simplified

har, = argmax P(D|h)
heH

P(D/h)is often called the likelihood
of the data D given A, and any
hypothesis that

maximizes P(D/h)is called a
maximum likelihood (ML)
hypothesis
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Example on MAP

Consider a medical diagnosis problem in
which there are two alternative hypotheses
(1) The patient has a particular form of
cancer (denoted by cancer)

(2) The patient does not (denoted by =
cancer)

A patient takes a lab test and the result
comes back positive. The test results a
correct positive result in only 98% of
cases in which the disease is actually
present and a correct negative result in
only 97% in which the disease is not
present. Further more 0.008 of the entire
population have this cancer. Determine
whether the patient has a cancer or not
using MAP hypothesis.

Solution:

The available data is from a particular
laboratory with two possible outcomes: +
(positive) and

- (negative)
P(cancer) = .008 P(—cancer) = 0.992
P(4|cancer) = .98 P(&|cancer) = .02

P(&|—-cancer) = .03  P(8S|—-cancer) = .97
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» Suppose a new patient is
observed for whom the lab
test returns a positive (+)
result.

» We diagnose the patient as not
having cancer because the negative
probability
IS more.

P(&|cancer)P(cancer) = (.98).008 = .0078
P(®|-cancer)P(—cancer) = (.03).992 = .0298
= hjrap = —cancer
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BAYESTHEOREM AND
CONCEPTLEARNING

What is the relationship
between Bayes theorem and
the problem of concept
learning?

Since Bayes theorem provides a
principled way to calculate the
posterior probability of each
hypothesis given the training data
p(h/D), and can use it as the basis
for a straightforward learning
algorithm that calculates the
probability for each possible
hypothesis, then outputs the most
probable.
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Brute-Force Bayes Concept Learning

We can design a straightforward
concept learning algorithm to
output the maximuma posteriori
hypothesis, based on Bayes
theorem, as follows:

Brute-Force MAP LEARNING algorithm
1. For each hypothesis h in H calculate the posterior probability

P(D|h)P(h)
P(D)

P(h|D) =

2. Output the hypothesis hy4p with the highest posterior probability

hayrap = argmax P(h|D)
heH
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In order specify a learning problem for
the BRUTE-FORCE MAP LEARNING
algorithm we must specify what
values are to be used for P(h)and for
P(D/h) ?

Lets choose P(h) and for P(D/h)to
be consistent with the following
assumptions:

« The training data D is noise free (i.e., dj
= ¢(x;))

» The target concept cis contained in the
hypothesis space H

« We have no a priori reason to believe
that any hypothesis is more probable
than any other.
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What values should we specify for
P(h)?

» Given no prior knowledge
that one hypothesis is more
likely than another, it is
reasonable to assign the
same prior probability to
every hypothesis Ain H.

« Assume the target
concept is contained in

1
P(h) = T forallh e H

H and require that
these priorprobabilities
sum to 1.
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What choice shall we make for

P(D/h)

« P(D/h) is the probability
of observing the target
values D = (d;. . .d,) for
the fixed set of instances
(x;. .. Xy) given a world
in which hypothesis Aholds

« Since we assume noise-free
training data, the probability
of observing classification d};
given h is just 1
(consistent)f d;= h(x;) and
O(inconsistent) if d;# h(x;).
Therefore,

1 ifd; = h(x;) for all d; €
P(D|h) =
0 otherwise
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Given these choices for P(h) and
for P(D[h)we now have a fully-
defined problemfor the above
BRUTE-FORCE MAP
LEARNING algorithm.

In a first step, we have to determine
the probabilities for P(h|D)

h Is inconsistent with training data D

0-P(h)

P(h|D) = =)
P(D)
h IS consistent with training data D
..L 1. L 1
P(MD)_ ’ ‘_ ”‘H‘ _
PID) ~ kol ~ [V
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To summarize, Bayes theorem
implies that the posterior

probability P(h|D) underour
assumed P(h) and P(D]h) is

l—VSl_ if & is consistent with D
: H.p|
P(h|D) =

0 otherwise

where |VS|-|,D| IS
the number of
hypotheses from
H consistent with
D(version space)
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The Evolution of Probabilities Associated with Hypotheses

- Figure (a) all hypotheses have the
same probability.

 Figures (b) and (c), As training
data accumulates, the posterior
probability for inconsistent
hypotheses becomes zero while
the total probability summing
to 1 isshared equally among
the remaining consistent
hypotheses.

P(h) P(h|D1) P(h|D1,D2)

| 3

| hypotheses hypotheses hypotheses

(a) (b) (¢)
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MAP Hypotheses an d ConsistentLearners

A learning algorithm is a consistent
learner if it outputs a hypothesis that
commits

zero errors over the training
examples.

Every consistent learner outputs a
MAP hypothesis, if we assume a
uniform prior probability
distribution over H (P(h;)) = P(h;)
for all i, j), and deterministic, noise
free training data (P(D|h) =1 if D
and h are consistent, and O
otherwise).

Example:

« FIND-S outputs a consistent
hypothesis, it will output a MAP
hypothesis under the probabilit
distributions P(h) and P(D]|h
defined above.

« Are there other probability
distributions for P(h) and P(D|h)
under which FIND- S outputs
MAP hypotheses? Yes.

« Because FIND-S outputs a
maximally specific hypothesis
from the version space, its output
hypothesis will be a MAP
hypothesis relative to any prior
probability  distribution  that
favours more specific
hypotheses.
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« Bayesian framework is a way to
characterize the behaviour of
learning algorithms

« By identifying probability
distributions P(h) and P(D|h)
under which the output isa
optimal hypothesis, implicit
assumptions of the algorithm
can be characterized
(Inductive Bias)

 Inductive inference is
modelled by an equivalent
probabilistic reasoning
systembased on Bayes
theorem
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MAXIMUM LIKELIHOOD AND
LEAST-SQUARED
(ML and LS) ERROR
HYPOTHESES

Consider the problem of learning a
continuous-valued target function
such as neural network learning,
linear regression, and polynomial
curve fitting

A straightforward Bayesian analysis
will show that under certain
assumptions any learning algorithm
that minimizes the squared error
between the output hypothesis
predictions and the training data
will output a maximum likelihood
(ML) hypothesis
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Learning A Continuous-Valued TargetFunction

» Learner L considers an instance space
X and a hypothesis space H consisting
of some class ofreal-valued functions
defined over X, i.e., (VvheH)[ h: X —

R] and training examples of the form
<Xi,di>

« The problem faced by L is to learn an
unknown target function f : X —-R

A set of m training examples is
provided, where the target value of
each example is corruptedby random
noise drawn according to a Normal
probability distribution with zero mean
(di = f(x) + &)

« Each training example is a pair of the form
(Xi ,di ) wheredi = f (Xi) + €.

— Here f(X;) is the noise-free value of the
target function and e;is a random
variable representing

the noise.

—It is assumed that the values of
the e are drawn
independently and that they
are distributedaccording to a
Normal distribution with zero
mean.

« The task of the learner is to output
a maximum likelihood
hypothesis, or, equivalently, a
MAPhypothesis assuming all
hypotheses are equally probable a
priori.
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Using the previous definition of hy, we have

harp = argmazx p(D|h)
heH

Let us take training examples
instances(x1,x2,..xn) and target
values D=(d1,d2,...dm). We need to
multiply all probabilities. Assuming
training examples are mutually
independent given h, we can write
P(D|h) as the product of the
various (d;| h)

h — aramax |
Here distribution of values can be
binomial or distributed. Given the
noise e obeys a Normal
distribution with zero mean and

m

1 szl o T s N Y2
hA[L — a,”g,’]’laaj H ‘ e 252 (dl }l(.l,l))
heH V2no?

=1

unknown variance 02 , each d;
must also obey a Normal
distribution around the true
targetvalue f(x;). Because we are
writing the expression for
P(D|h), we assume h is the
correct description of f. Hence,
mean J = f(x;) = h(x;)
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m
hy = argmax

18CS71

|
=

heH

Il
T

= argmax

heH ;-‘:‘1‘

It is common to maximize the less
complicated logarithm, which is justified

because

€ 20
V2ro?

of the monotonicity of function p, eis 1

will logarithm.

= I
ar%gf]{ax 121: n
The first term in this
expression is a constant
independent of /and can
therefore bediscarded

Maximizing this negative
term is equivalent to

minimizing the corresponding

positiveterm.

1

V2ro? 20 -
—argmaxz

heH i

= argmlnz

E11

(di — h(xi))?

202 (d - h(x))?

(d-x)?
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m

harr = argmin d; — h(z;))?
gm 2_] (1))

aTeonNn—g <——93™—m

W erg O "n 3 0O

~ Q) =
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S 0OQOT OO ™

 the hy, is one that minimizes the sum
of the squared errors

Why is it reasonable to choose the

Normal distribution to characterize

noise?

- good approximation of many types of
noise in physical systems

 Central Limit
Theorem shows that
the sum of a

sufficiently large
number of
independent,
identically

distributed random
variables itself
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obeys a Normal
distribution

Only noise in the target value
is considered, not Iin the
attributes describing the
instancesthemselves
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IMUM LIKELIHOOD HYPOTHESES
FORPREDICTING
PROBABILITIES

Maximum likelihood hypothesis
is the one that minimizes the
sum of squarederrors over the
training examples.

Consider the setting in which we
wish to learn a nondeterministic
(probabilistic)function f : X — {0,
1}, which has two discrete output
values.

We want a function approximator whose
output is the probability that f(x) = 1

(if hypothesis is correct:1
else 0) In
other
words ,
learn the
target
functionf’
: X — [0,
1] such
that f'(x)
= P(f(x)
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=]_)

How can we learn f' (how much
prediction is correct) using a neural
network?

Use of brute force way would be to first
collect the observed frequencies of 1's and
0's for each possible value of x and to then
train the neural network to output the
target frequency for each x.
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What criterion should we optimize
In order to find a maximum
likelihood hypothesisfor ' in this
setting?

* First obtain an expression for P(D|h)

« Assume the training data D is
of the form D = {(xy, dy) . ..
(Xm, dm)}, Where q; isthe
observed 0 or 1 value for f

().
« Both x;and d; as random variables,
and assuming that each training

example is drawn independently,
we can write P(D|h) as

AO|H)= [P

Applying the product rule

HP i | b, x;))P(x;)
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T

h r h(x,-) lfd,=1
c P(di|h, x;) = 1 equ (3)

L (1 - h(x,)) if d,‘ =)

<L 7 7 T O OO0 T T

- Q — O

j_

~
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Re-express it in @ more mathematically
manipulable form, as
P(dith, x;) = h(x)% (1 — h(x;))' ™4 cqu (4

Equation (4) to substitute for P(d; |h, x;) in
Equation (5) to obtain

P(DIh) = [ [rG)* (1 = h(xi))' =" P(xi) equ (9
i=1
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We write an expression for the
maximum likelihood hypothesis

hyt = argmaxﬂhx, (- h(x) ! P()
hel il

The last term is a constant
independent of h, so it can be

dropped
hpy = argmax l_[h(x,-)d" (1 - h(x,-))l“d" equ (6)
heH i=1

It easier to work with the log of the

hyr = argmade,- Inh(x;))+ (A —d)In(1 — h(x;)) equ©
heH j=1

likelihood, yielding

Equation (7) describes the
quantity that must be
maximized in order to obtain
themaximum likelihood
hypothesis in our current
problem setting
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Gradient Search to Maximize Likelihood in a Neural Net

Derive a weight-training rule for
neural network learning that
seeks to maximizeG(h, D) using
gradient ascent

» The gradient of G(h, D) is
given by the vector of partial
derivatives of G(h, D)with
respect tothe various
network weights that define
the hypothesis h represented
by the learned network

* In this case, the partial
derivative of G(h, D) with
9G(hD) _ ~~ OG(h, D) Oh(x;)

OWg —~  Oh(x;) Ow
™ 9(diIn h(x;) + (1 — d)) In(1 — h(x;))) dh(x;)
N ; oh(x;) OWijk
< d h (x;)  Oh(x;)
= 2 A (T — hx) ow cau ()

respect to weight wy, from
input k to unit jis
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Suppose our

neural network 8h(x,)

is constructed 8 (xt)x:k h(x,)(l-h(x,'))x,-jk
from a single i

layer ofsigmoid

units. Then,

where Xy is the kthinput to
unit j for the ith training
example, and d(x) is the
derivative of the sigmoid
squashing function.

Finally, substituting this expression
into Equation (1), we obtain a
simple expressionfor the
derivatives that constitute the

gradient
dG(h,D) &
= ) (d; = h(x;)) xi;
™ Zl( (%)) X
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Because we seek to maximize rather than
minimize P(D|h), we perform gradient
ascent rather than gradient descent
search. On each iteration of the search
the weight vector is adjusted in the
direction of the gradient, using the weight
update rule

Wik < Wik + Awjg

Where,

m
Awjr =1 Z(di — h(xi)) xijk equ (2)

i=1

where n is a small positive constant that
determines the step size of the i gradient
ascent search
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It is interesting to compare this weight-
update rule to the weight-update rule
used by the BACKPROPAGATION
algorithm to minimize the sum of squared
errors between predicted and observed
network outputs.

The BACKPROPAGATION update
rule for output unit weights, re-
expressed using our current
notation, is

Wik < Wijk T ijk

Where,

Awje =1 ) k()1 —h(x))(d; = h(x)) xijk
=1
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MINIMUM DESCRIPTION
LENGTH PRINCIPLE

« Representing a concept in a minimal way,
then the concept is said to be good one.

« Motivated by interpreting the
definition of huap in the light of basic
concepts from informationtheory.
hyap = argmazx P(D|h)P(h)
heH

which can be equivalently expressed in
terms of maximizing the log, i.e log(ab)= log
a+logb

hyrap = argmax log, P(D|h) + log, P(h)

he H
or alternatively, minimizing the
negative of this quantity
hyrap = argmin — logy, P(D|h) — log, P(h)
hec H

 This equation can be interpreted as
a statement that short hypotheses
are preferred, assuming aparticular
representation scheme for encoding
hypotheses and data
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MDL Example: Introduction to a basic result of information
theory

consider the problem of designing a
code to transmit messages drawn at
random from set D

| is the message

The probability of encountering
message i is p;

Interested in the most compact
code; that is, interested in the
code that minimizes the expected
number of bits we must transmit in
order to encode a message drawn
at random

« To minimize the expected code
length we should assign shorter
codes to messages that aremore
probable

« The number of bits required to encode
message i using code C as the
description length
of message i with respect to C,
which we denote by L(i).
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Interpreting the equation

hayrap = argmin — logy P(D|h) — log, P(h) e
he H

Rewrite Equation (1) to show that
hmap IS the hypothesis h that
minimizes the sum given by the
description length of the hypothesis
plus the description length of the
data given thehypothesis.

hA’IAP = argmin LCH (h) -+ LCDlh(Dlh)
heH

where Cy and Cp, are the optimal encodings
for H and for D given h
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The Minimum Description Length
(MDL) principle recommends
choosing the hypothesis that
minimizes the sum of these two
description lengths of equ.

hypap = argmin Lo, (h) + Lchh(D|h)
he H

Minimum Description Length principle:

hvpL = argmin L, (h) + L¢, (D | h)
heH

Where, codes C; and C, to represent the
hypothesis and the data given the hypothesis

The above analysis shows that if we
choose C; to be the optimal encoding of
hypotheses C, and ifwe choose C, to
be the optimal encoding Cph, then hyp,
= Nvap
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Application to
Decision Tree
Learning

Apply the MDL principle to the problem of
learning  decision trees from some
trainingdata.

What should we  choose for the
representations C, and C, of hypotheses and
data?

« For C;: C; might be some obvious
encoding, in which the description
length grows with the number of nodes
and with the number of edges

« For C,: Suppose that the sequence of
instances (X; . . .Xm) is already known
to both the transmitter and receiver, so
that we need only transmit the
classifications (f (x1) . . . f(Xm)).

Now if the training classifications (f (x1)
. . .f(xm)) are identical to the predictions
of the hypothesis, then there is no need
to transmit any information about these
examples. The description length of the
classifications given the hypothesis
ZERO

If examples are misclassified by h, then
for each misclassification we need to
transmit a message that identifies which
example is misclassified as well as its
correct classification
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The hypothesis hyp. under the
encoding C; and G, is just the one that
minimizes the sum ofthese description
lengths.
« MDL principle provides a way for
trading off hypothesis complexity
for the number oferrors
committed by the hypothesis

« MDL provides a way to deal with the issue
of overfitting thedata.

 Short imperfect hypothesis may be selected
over a long perfect hypothesis.
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NAIVE BAYES OPTIMAL CLASSIFIER

Bayes optimal classifier is a probabilistic
model that makes the probable
prediction

for a new example.

P(A/B)= [P(B/A).P(A)]/ P(B) i.e.
P(y/X)=[P(X/y).P(y)] / P(X)

The naive Bayes classifier is based
on the assumption that the

attribute values areconditionally
independent given the target value.
For a dataset: X={x1,x2......xn}

Here x=feature vector/attributes and
y=yes/no

P(y/x1x2....xn)=
[[P(x1/y).P(x2/y)........ P(xn/y)] *

P(y)] / P(x1).P(x2)....... P(xn)P(y)
[ P(xi/y) / P(x1).P(x2)....... P(XN) .......v....

i=1

P(y) M" P(xi/y)

i=1 omitted the
denominator(as they remain
constant) in egnl bcz we arenot
concerned about calculation.
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Examplel on naive Bayes classifier

Find the probability(player will enjoy or not) to
play tennis on 15% day where the conditions are:
{outlook = sunny and temp=hot}

P(yes/sunny,hot)= P(y) MN" P(xi/y)

i=1
= P(sunny/yes) * P(hot/yes) *
P(yes)
=2/9 * 2/9 * 9/14
=0.031
P(no/sunny,hot)= P(y) M" P(xi/y)
i=1
= P(sunny/no) * P(hot/no) *
P(no)
=3/5 * 2/5 * 5/14
=0.08571

Total=0.031+0.08571 = 0.27
P(yes)=0.031/0.27=0.114

P(no)=0.08571/0.27= 0.317

Compare which probability is more, here no
probability is more. Therefore player will not enjoy

the sport.
»
S. No. Outlook Temperature Humidity Windy PlayTennis
s Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
B Rainy Mild High Weak Yes
5 Rainy Cool Normal Weak Yes
6 Rainy Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rainy Mild Normal Weak Yes
x & Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
i3 Overcast Hot Normal Weak Yes

14 Rainy Mild High Strong No
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Example2 on naive Bayg s classifier

Find the probability(pl]ayer will enjoy or not) to play ¢

S
S. No. Outlook Temperature Humidity Windy PlayTennis

1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
3 Rainy Mild High Weak Yes
5 Rainy Cool Normal Weak Yes
6 Rainy Cool Normal Strong No
7 Overcas t Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rainy Mild Normal Weak Yes
e & § Sunny Mild Normal Strong Yes
12 Overcas t Mild High Strong Yes
i3 Overcast Hot Normal Weak Yes
14 Rainy Mild High Strong No

tennis on 15

{outlook =

sunny,temp=cool,humidity=high,wind=strong

}P(yes/sunny,cool, high,strong)

P(sunny/yes)*P(cool/yes)*P(high/yes)*P(strong/ye
s)*p(yes)

=2/9 * 3/9 * 3/9 * 3/9 * 9/14

=0.0053

P(no/sunny,cool,high,strong)

I;(sunny/no)*P(cool/no)*P(high/no)*P(strong/no)*
p(no)

=1/5*4/5 * 3/5 * 5/14 * 3/5

=0.0206

Total=0.0053+0.0206 = 0.0259
P(yes)=0.0053/0.0259= 0.2046
P(n0)=0.0206/0.0259= 0.7953

Compare which probability is more, here no
probability is more. Therefore player will not enjoy
the sport.
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GIBS ALGORITHM

1. Chooses one hypothesis at random,
according to P(h/D)

2. U
S
e

S O S < h— o nw o —o o w — o

O S O+t n o5
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BAYESIAN BELIEF NETWORKS

The naive Bayes ¢

assifier makes s
attributes |

d

Values of the
et value v

arning the target function

onditiona] Independence
probabilities

Bayesian belief networks allow stating condition
subsets of the varighles

gOVverning a set of Variables
assumptions along with a et of conditional

al independence assumptions that apply to
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BAYESIAN BELIEF NETWORKS (contd.,)

Consider an arbitrary set of random variables Y, . .
€ 0n the set of possible values V(Y).

Jomnt space of the set of variables Y to be the cross product V(Y1) x V(Yy) x. .

- Yn, where each variable Yi can

ier words, each item in the joint space corres
nments of values to the tuple of variables (Y.« Yo)iThe probability distribution
I this joint' space is called the i joint probability dxstnbutxon

dInt probability distribution specifies the probablht
able bindings for the tuple (Y, ... Y,).

belief network describes the joint probability distribution for a set of

ponds to one of the possible

y for each of the possible

alued random variables. X is conditionally independent of
| tion governing X is independent of the value of Y given a

yppZ=w=PX=xlZ=z)

. e

prudue VD
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BAYESIAN BELIEF
~ NETWORKS (contd.,)

The above express!
sets of variables.

o se arie The set of v,

aris

. Ym given the sey of ableg
b )

an be extended t
Varj by
i s
dbleg-[ £
o |

of varii

L Zy) = P ... X2, =
s 20

Wbles Y1 - -

ce €

| independen
jent of the set

1y indepenc

Xy Y1 Yme Zy -

- assumes that the instance attribute A is condition;
he target value v. This allows the naive Bd”y i"depe

AYes clag . ey

Sifiy

9

Cundi(ionn
s conditiona
Zo AL

P(X1-

The naive Bayes classifier
given t

e attribute A2

of instanc
calculate P(A1 A2 | V) as follows.
P(A1, A2lV) = P(A1|Az2, VIP(A2|V)
— P(AIV)P(A21V)
Represenlation

the joint probability distribution for a set of
3 Varighle

ef network represents
directed acyclic graphs.

are represented by

A Bayesian beli
Bayesian networks (BN)

S8 S-B =SB =S-8
C 04 01 08 02
-C 06 09 02 08

Lighining

Campfire

The Bayesian ne -
twork in above fi
boolean variables igure represents the joi 1
s Storm, Lightni s the joint probability distribution over¥
ightning, Thunder, ForestFire CaSlpf [fj Z‘S[YT‘bU"Z“ o
’ ire, and BusTourGroup
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BAYESIAN BELIEF NETWORKS (contd.,)

n network (BN) represents the

¥ joint probability distributi cifying a &
nal independence assumptions : HER LR S e

acyclic graph, together with sets of local condm‘:
Pace is represented by a node in the Bayesian ﬂe‘-work;w.

.Lhe;tsertlo.n that the variable is conditionally lﬂde_ i,
4 ork given its immediate predecessors in the petW™

Y desireq ass|
. n
mnables POV Y ¢an be Computeq bi tll]\]ee I;t o vl Wi, Yn) L0 the tuple of network
OTmUkl elwor
P(y "
1veas ’ |
Yn) n P (y:IParents(Y,))
where, Parents(Y;) denotes the set of nmme‘.l
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BAYESIAN BELIEF
NETWORKS (contd.,)

Example:

Consider the node Campfire.

_ ) The network nodes
is conditionally

independent of i ; and arcs represent the assertion tha Campfire
IS non-descendants Lightni e

- i VLAl ining a en ite

immediate parents Storm and BusTourGroup ghtning and Thunder, given its

5B S5-8 ~§8 -5 ~;'
C 04 01 08 02
~C 06 09 02 038

This means that once we know the value of the variables Storm and BusTourGroup. the
variables Lightning and Thunder provide no additional information about Campfire
The conditional probability table associated with the variable Campfire. The assertion is

P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4
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BAYESIAN BELIEF NETWORKS (contd.,)

an network to infer the value of some target variable (e.g., ForestFire) given

o5 of the other variables.
' ard if values for all of the other variables in the network

sed to compute the probability distribution for any subset

he values or distributions for any subset of the remaining

vork is known 0 be NP-hard

Learning Bayesian Belief Networks w

Affective algorithms can be considered for learning .Bayesiz;)r; belief netWOl‘ksf
data by considering several different settings for extng ey o om
> First. the network structure might be given in advance, or it might haye 1, bty oy
; n
Crrey "(\

the training data. : ) .
ork variables might be directly observable in eacp, h‘aininxm

» Second, all the netw
or some might be unobservable. s '
k structure is given in advance and the e
es, learning the conditional prop,p... e
ditional probability table entries abiliy .l

In the case where the networ
observable in the training exampl

straightforward and estimate the con il 2
e In the case where the network structure is given but only some of the v, .
are observable in the training data, the learning problem is more difficyly The Vi,
ghts for an ANN. b'i

problem can be compared to learning wei
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GRADIENT ASCENT
BAYESIAN NETWORKS

Gradient Ascent Training of Bayesian Network

The gradient ascent rule which maximizes P(DJh) by following the gradient of In P(Du,
respect to the parameters that define the conditional probability tables of the Bd)eSlannm
Let wix denote a single entry in one of the conditional probability tables. In Pamcula;.

denote the conditional probability that the network variable Yi will take on the value y,_ g

that its immediate parents U; take on the values given by uik.
31n P(DIk)
Fwin for each of the wiu.

The gradient of In P(DJh) is given by the derivatives
As shown below, each of these derivatives can be calculated as

P(Y; = Yij» U= uit'd) equ(l)

dwiy deD Wi jk

3P (D)
dwyr  for all i, j, and k. Assuming ¥

Derive the gradient defined by the set of derivatives
training examples 4 in the data set D are drawn independently, we write this derivative

d1n P, (D) 2
8w1;g o 8w,j,, lndeITD Fi (d)
= d In P, (d)
deD awi}k
I 3P:(d)

acp Pr(d) dw;
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GRADIENT ASCENT BAYESIAN NETWORKS (cont.,)

This last step mak,
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GRADIENT ASCENT
BAYESIAN NETWORKS
(COnt-l)

Applying Bayes theorem to Iewrite Py(d]y j4ig), We have
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GRADIENT ASCENT BAYESIAN NETWORKS (cont.,)

o in Equation (1), The, \

4 the gradient B the gradieng 5, "%
Thus, we have ved tit:i ol before W Cantl:;ai:eightsgrw; lf n%:reascem |
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EM ALGORITHM

THE EM ALGORITHM

1 - h - ( e b b‘ d b t - o . .
1

Estimating Means of kK Gaussians

: : yva
Consider a problem in which the data D is a set of instances generated b} probes
distribution that is a mixture of k distinct Normal distributions.

This problem setting is illustrated in Figure for the case where k = 2 and 4
instances are the points shown along the x axis

e Each instance is generated using a two

step PIro T

.

elected at random. " oF
s generated according ©

A points as shown in the g/
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EM ALGORITHM contd.,

—
e To simplify, considcrm Machine LearningJ

The = ~t: al case
- e ch.ec.uon Of the Single N

cach with uniform Prob et
- Each of the K N¢

7 diser; i
.'.lb.lny ibution at each step is based O
rmal diser; i
- 4 Stribuy -
e The lecaming task is 1o out 1ons has the same v

B Put a Ky SR ariance o, known
each of the k distributions. >Pothesis | -

: : L T that describes th
. We \voul'd like to find 4 Maximum likelis
hypothesis 2 that maximizes P(D |h). "ooe hypothesis for e
ez
M ar; = argmin Z Cxi — 202
re (8D
i=]1
In this case. the sum of SqQuared errors is i
: N = Munimized by the sample mean
Haryr — — X
2 X (2)

e Our problem here. how

ever, involves a mixture
we cannot observe

which instances were gene
e Consider full description of each instance as t

e where x; is the observed value of the it
-

of k different Normal distrit
rated by which distribution.
he triple (x;, z.,. Zi2).

h instance and

where z:; and z:> indicate which of the two Normal distributions
generate the value x;

In particular, z;; has the value 1 if x; was created by the j*" Normal distrib

otherwise.

* Here x; is the observed variable in the description of the instance. and z,
hidden variables.

* If the values of z; and zi2 were observed. we could use following Equation
the means p; and p»

-

Because they are not. we will instead use the EM algorithm
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EM ALGORITHM contd.,

EM algorithm

Step 1: Calculate the expected value E[z;] of each hidden variable z;, assuming
the current hypothesis & = (@1, p2) holds.

Step 2: Calculate a new maximum likelihood hypothesis A’ = (i}, i3), assuming
the value taken on by each hidden variable z;; is its expected value E{z;]
Calculated in Step 1. Then replace the hypothesis b = (g1, #2) by the
new hypothesis 4’ = (i}, #5) and iterate.

! n
was generated by the Jjth Nonnallsdft[rzi"] I8 jus the o>
Stribuss
Eflzy] = 2p(x = Xile = py)
2oy Plx = Xilpe = py
o3 Gru—u 2
’2‘=l e iz n—pa. )
Thus the first step is i Curren
P 18 implemented by substituting the
the observed x; into the above expression. = t values (u;, b and

In the second step we use the Elz; i derive
| > i7] calculated during S :
new maximum likelihood hypothesis A = (i, 15). iy >
maximum likelihood hypothesis in this case is given by

?:1 E[Zu] X
2 i=1 Elz;]

i <~
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MODULE 5

INSTANCE
BASED
LEARNING

INTRODUCTION

e Instance-based learning methods such as nearest neighbor and locally
weighted regression are conceptually straightforward approaches to
approximating real-valued ordiscrete-valued target functions.

e Learning in these algorithms consists of simply storing the presented training
data. When a new query instance is encountered, a set of similar related
instances is retrieved from memory and used to classify the new query
instance

e Instance-based approaches can construct a different approximation to the
target functionfor each distinct query instance that must be classified
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Advantages of Instance-based
learning

1. Training is very fast
2. Learn complex target function
3. Don't lose information

Disadvantages of Instance-based
learning

e The cost of classifying new instances can be high. This is due to the fact that
nearly all computation takes place at classification time rather than when the
training examples are first encountered.

e In many instance-based approaches, especially nearest-neighbor approaches, is
that they typically consider all attributes of the instances when attempting to
retrieve similar training examples from memory. If the target concept depends
on only a few of the many available attributes, then the instances that are
truly most "similar" may well be alarge distance apart.

Bepartment of ISE, Atria I.T Page 2



Artificial Intelligence and Machine Learning 18CS71

«NEAREST NEIGHBOR
LEARNING

e The most basic instance-based method is the K- Nearest Neighbor
Learning. Thisalgorithm assumes all instances correspond to points in the n-
dimensional space R".

e The nearest neighbors of an instance are defined in terms of the standard
Euclideandistance.

e Let an arbitrary instance x be described by the feature vector

((a(x), a.(x), ......... , a(X))

Where, a.(x) denotes the value of the r™
attribute of instance x.

e Then the distance between two instances x; and x; is defined to be
d(xi, X; )Where,

d(xi, xj) = \I Z(ar(lf) — a,(x;))?
r=1

e In nearest-neighbor learning the target function may be either discrete-
valued or real-valued.

Let us first consider learning discrete-valued target functions
f iR/ -V
of the formWhere, V is the finite set {vi, . . . vs }
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The k- Nearest Neighbor algorithm for approximation a discrete-valued target
function is
given below:

Training algorithm:

e For each training example (x, f(x)), add the example to the list training_examples
Classification algorithm:

» Given a query instance x, to be classified,

e Let x;...x, denote the k instances from training_examples that are nearest to xg
¢ Return

veV

k
fxg) < argmax ) " 8(v. £x)
i=]

where é(a, b) = 1 if @ = b and where é(a, b) = 0 otherwise.
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o The value f(xq) returned by this algorithm as its estimate of f(xq) is just
the most common value of f among the k training examples nearest to Xq.

o Ifk = 1, then the 1- Nearest Neighbor algorithm assigns to f{(xq) the value f(xi).
Where x; is the training instance nearest to Xxq.

e For larger values of k, the algorithm assigns the most common value among the
k nearesttraining examples.

e Below figure illustrates the operation of the k-Nearest Neighbor algorithm for the case
where the instances are points in a two-dimensional space and where the target
function is Booleanvalued.

e The positive and negative training examples are shown by “+” and “-”
respectively. Aquery point Xq is shown as well.

e The 1-Nearest Neighbor algorithm classifies xqas a positive example in this
figure, whereas the 5-Nearest Neighbor algorithm classifies it as a negative
example.

e Below figure shows the shape of this decision surface induced by 1- Nearest
Neighbor overthe entire instance space. The decision surface is a combination of
convex polyhedra surrounding each of the training examples.

e For every training example, the polyhedron indicates the set of query points
whose classification will be completely determined by that training example.
Query points outside the polyhedron are closer to some other training
example. This kind of diagramis often called the Voronoi diagram of the set
of training example
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The K- Nearest Neighbor algorithm for approximation a real-valued target
functibn’is givénbelow

Training algorithm:
e For each training example {x, f(x)}, add the example to the list training _exampies
Classification algorithm:
» Given a query instance x, to be classified,
o Let x;...x; denote the k instances from training_examples that are nearest 0 X,

o Return
i—=1 Sf(xi)
k

flxp) «

Distance-Weighted Nearest Neighbor
Algorithm

e The refinement to the k-NEAREST NEIGHBOR Algorithm is to weight the
contribution of each of the k neighbors according to their distance to the query
point Xq, giving greater weight to closer neighbors.

e For example, in the k-Nearest Neighbor algorithm, which approximates
discrete-valued target functions, we might weight the vote of each neighbor
according to the inverse square of its distance from Xq

Distance-Weighted Nearest Neighbor
Algorithm for approximation a discrete-valued
target functions
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Training algorithm:
e For each training example (x, f(x)), add the example to the list training_examples

Classification algorithm:
o Given a query instance x, to be classified,
e Let x;...x; denote the k instances from training_examples that are nearest to x,
e Return k

Flxg) < argn;axz wid(v, f(x:))
veE 1

i=

where 1

Y= Ay, 10)?
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Distance-Weighted Nearest Neighbor
Algorithm for approximation a Real-valued

target functions

Training algorithm:
e For each training example (x, f(x)), add the example to the list training_examples

Classification algorithm:
o Given a query instance x, to be classified,
e Let x;...x; denote the k instances from training _examples that are nearest to x;

e Return

k o
flxy) « Z:i=1kw, f(x:)
i=1 Wi
where I 1
" d(xq,_x')
Terminology

¢ Regression means approximating a real-valued target function.

¢ Residual is the error f(x) - f (x) in approximating the target function.

o Kernel function is the function of distance that is used to determine the
weight of eachtraining example. In other words, the kernel function is the
function K such that
wi = K(d(xi, Xq))
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LOCALLY WEIGHTED
REGRESSION

e The phrase "locally weighted regression" is called local because the
function isapproximated based only on data near the query point, weighted
because the contribution of each training example is weighted by its distance
from the query point, and regression because this is the term used widely in the
statistical learning community for the problem of approximating real-valued
functions.

e Given a new query instance Xq, the general approach in locally weighted
regression is to construct an approximation f that fits the training examples in
the neighborhood surrounding Xxq. This approximation is then used to calculate

the value f(xq), which is output as the estimated target value for the query
instance.
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Locally Weighted Linear
Regression

e Consider locally weighted regression in which the target function £ is

f(x) = wo 4+ wia1(x) + - - - + wpa,(x)

approximated nearXq using a linear function of the form

Where, a(x) denotes the value of the i
attribute of the instance x

e Derived methods are used to choose weights that minimize the squared error
summed over the set D of training examples using gradient descent

1 A
=52 F®-f)

xeD

Aw; =1 (f&x)— fx)a;(x)

xeD

Which led us to the gradient descent
training rule

Where, n is a constant learning rate

e Need to modify this procedure to derive a local approximation rather than a
global one. The simple way is to redefine the error criterion E to emphasize
fitting the local trainingexamples. Three possible criteria are given below.

1. Minimize the squared error over just the k nearest neighbors:
1 A
E1(xg) = 5 > (f @) — F&x))° equ(l)

X€ k nearest nbrs of xq4
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2. Minimize the squared error over the entire set D of training examples, while
weighting the error of each training example by some decreasing function

. 1 A
Ex(xg) = 5 3 (f() = f())? K@(xg, %) equey

xeD
K of its distance from Xq :

3. Combine 1 and 2:

(f(x) — F(x))? K(d(x,, x)) el

N =

E3(xy) =

x€ k nearest nbrs of xg
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If we choose criterion three and re-derive the
gradient descent rule, we obtain the
following training rule

Aw; =1 >, K(d(xg, x)) (f&) — f(x) a;(x)

x€ k nearest nbrs of x,

The differences between this new rule and
the rule given by Equation (3) are that the
contribution of instance x to the weight
update is now multiplied by the distance
penalty K(d(x., X)), and that the error is
summed over only the k nearest training
examples.

RADIAL BASIS FUNCTIONS

¢ One approach to function approximation that is closely related to distance-
weightedregression and also to artificial neural networks is learning with radial
basis functions

e In this approach, the learned hypothesis is a function of the form

k
f(x) = wo + Z w, K, (d(xy, x)) equ (1)
u=1

e Where, each xyis an instance from X and where the kernel function
Ku(d(xu, X)) isdefined so that it decreases as the distance d(xu, x) increases.
e Here k is a user provided constant that specifies the number of kernel
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functions to beincluded.

e fis a global approximation to f (x), the contribution from each of the Ku(d(xu,
X)) terms is localized to a region nearby the point xu.

Choose each function K.(d(x., X)) to be a
Gaussian function centred at the point x, with
some variance oz

_l.-—dz(x“’x)

2
Ku(d(xu’ x)) - eZa“

e The functional form of equ(l) can approximate any function with arbitrarily
small error, provided a sufficiently large number k of such Gaussian kernels and

provided the width
2

o of each kernel can be separately
specified

e The function given by equ(1) can be viewed as describing a two layer network
where the first layer of units computes the values of the various Ku(d(xu, X))

and where the second layer computes a linear combination of these first-layer
unit values
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Example: Radial basis function (RBF)
network

Given a set of training examples of the target
function, RBF networks are typically trained in
a two-stage process.

1. First, the number k of hidden units is determined and each hidden unit u is
defined bychoosing the values of x, and a? that define its kernel function
Ku(d(xy, X))

2. Second, the weights w, are trained to maximize the fit of the network to the
trainingdata, using the global error criterion given by

E= > - fe
Because the kernel functions are held
fixed during this second stage, the linear
weight values w, can be trained very
efficiently

a,(x) a,() a,(x)
Several alternative methods have been
proposed for choosing an appropriate number
of hidden wunits or, equivalently, kernel
functions.
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¢ One approach is to allocate a Gaussian kernel function for each training
example(X;f (xi)), centring this Gaussian at the point xi.

Each of these kernels may be assigned the
same width ¢%. Given this approach, the
RBF network learns a global approximation
to the target function in which each
training example (x, f (x)) can influence
the value of fonly in the neighbourhood
of X.

e A second approach is to choose a set of kernel functions that is smaller than
the number of training examples. This approach can be much more efficient
than the first approach, especially when the number of training examples is
large.

Summary

e Radial basis function networks provide a global approximation to the target
function, represented by a linear combination of many local kernel functions.

e The value for any given kernel function is non-negligible only when the input x
falls into the region defined by its particular centre and width. Thus, the
network can be viewed as a smooth linear combination of many local
approximations to the target function.

e One key advantage to RBF networks is that they can be trained much more
efficiently than feedforward networks trained with BACKPROPAGATION.
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CASE-BASED REASONING

e (Case-based reasoning (CBR) is a learning paradigm based on lazy learning
methods andthey classify new query instances by analysing similar instances
while ignoring instances that are very different from the query.

e In CBR represent instances are not represented as real-valued points, but
instead, they use a rich symbolic representation.

e CBR has been applied to problems such as conceptual design of mechanical
devices based on a stored library of previous designs, reasoning about new
legal cases based on previous rulings, and solving planning and scheduling

problems by reusing and combining portions of previous solutions to similar
problems

A prototypical le of _based _

e The CADET system employs case-based reasoning to assist in the conceptual
design ofsimple mechanical devices such as water faucets.

e It uses a library containing approximately 75 previous designs and design
fragments tosuggest conceptual designs to meet the specifications of new
design problems.

e Each instance stored in memory (e.g., a water pipe) is represented by
describing both itsstructure and its qualitative function.

¢ New design problems are then presented by specifying the desired function
andrequesting the corresponding structure.

The problem setting is illustrated in below
figure

A stored case: T—junction pipe

Structure: Function:
QI : 7} T i te'mperatuvre 0 }
O = waterflow 1
V . > o,
(S o, ¢
= O3, §

Q
-
I\)\i
NN
\
’w\]

%)
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e The function is represented in terms of the qualitative relationships among the
water- flow levels and temperatures at its inputs and outputs.

e In the functional description, an arrow with a "+" label indicates that the
variable at the arrowhead increases with the variable at its tail. A "-" label
indicates that the variable atthe head decreases with the variable at the tail.

e Here Q. refers to the flow of cold water into the faucet, Qn to the input flow of
hot water,and Qm to the single mixed flow out of the faucet.

e T Th, and Tm refer to the temperatures of the cold water, hot water, and
mixed water respectively.

e The variable C: denotes the control signal for temperature that is input to the
faucet, andCr denotes the control signal for waterflow.

e The controls C: and Cr are to influence the water flows Qc and Qn, thereby
indirectly influencing the faucet output flow Qm and temperature Tnm.

A problem specification: Water faucet

Structure: Function:
’ Z
? s
[ ] (1 !
T

0
“m

m

e CADET searches its library for stored cases whose functional descriptions
match the design problem. If an exact match is found, indicating that some
stored case implements exactly the desired function, then this case can be
returned as a suggested solution to the design problem. If no exact match
occurs, CADET may find cases that match various subgraphs of the desired
functional specification.
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REINFORCEMENT
LEARNING

Reinforcement learning addresses the
question of how an autonomous agent that
senses and acts in its environment can learn
to choose optimal actions to achieve its goals.

INTRODUCGCTION

e Consider building a learning robot. The robot, or agent, has a set of sensors
to observethe state of its environment, and a set of actions it can perform to
alter this state.

e Its task is to learn a control strategy, or policy, for choosing actions that achieve
its goals.

e The goals of the agent can be defined by a reward function that assigns a
numericalvalue to each distinct action the agent may take from each distinct
state.

e This reward function may be built into the robot, or known only to an external
teacherwho provides the reward value for each action performed by the robot.

e The task of the robot is to perform sequences of actions, observe their
consequences, and learn a control policy.

e The control policy is one that, from any initial state, chooses actions that
maximize thereward accumulated over time by the agent.
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Example:

A mobile robot may have sensors such as a camera and sonars, and actions
such as "move forward" and "turn."

e The robot may have a goal of docking onto its battery charger whenever its

battery levelis low.

e The goal of docking to the battery charger can be captured by assigning a
positive reward (Eg., +100) to state-action transitions that immediately result
in a connection tothe charger and a reward of zero to every other state-action
transition.

Reinforcement Learning Problem

e An agent interacting with its environment. The agent exists in an environment
describedby some set of possible states S.

e Agent perform any of a set of possible actions A. Each time it performs an
action a, in some state st the agent receives a real-valued reward r, that
indicates the immediate value of this state-action transition. This produces a
sequence of states s;, actions aj, and immediate rewards r; as shown in the
figure.

e The agent's task is to learn a control policy, m: S — A, that maximizes the
expected sum of these rewards, with future rewards discounted exponentially
by their delay.
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Agent
State Reward Action
Environment
a a a -
5P . B - 51 - - Sy ———— .
"0 ] - 3

Goal: Learn to choose actions that maximize

ro+yr1 +y2r2+ ... , where 0 <y<I

Reinforcement learning problem
characteristics

1. Delayed reward: The task of the agent is to learn a target function m that
maps from thecurrent state s to the optimal action a = m (s). In reinforcement
learning, training information is not available in (s, w (s)). Instead, the trainer
provides only a sequence ofimmediate reward values as the agent executes its
sequence of actions. The agent, therefore, faces the problem of temporal
credit assignment. determining which of the actions in its sequence are to
be credited with producing the eventual rewards.

2. Exploration: In reinforcement learning, the agent influences the distribution
of training examples by the action sequence it chooses. This raises the
question of which experimentation strategy produces most effective learning.
The learner faces a trade-off in choosing whether to favor exploration of
unknown states and actions, or exploitation of states and actions that it has
already learned will yield high reward.
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3. Partially observable states: The agent's sensors can perceive the entire
state of the environment at each time step, in many practical situations
sensors provide only partial information. In such cases, the agent needs to
consider its previous observations together with its current sensor data when
choosing actions, and the best policy may be one that chooses actions
specifically to improve the observability of the environment.
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4. Life-long learning: Robot requires to learn several related tasks within the

same environment, using the same sensors. For example, a mobile robot may
need to learn how to dock on its battery charger, how to navigate through
narrow corridors, and how to pick up output from laser printers. This setting
raises the possibility of using previously obtained experience or knowledge to
reduce sample complexity whenlearning new tasks.

THE LEARNING TASK

Consider Markov decision process (MDP) where the agent can perceive a set S
of distinct states of its environment and has a set A of actions that it can
perform.

At each discrete time step t, the agent senses the current state st, chooses a
current actionat, and performs it.

The environment responds by giving the agent a reward r: = r(st, at) and by
producing the succeeding state st+ = 0(st, at). Here the functions d(st, at) and
r(st, at) depend only on the current state and action, and not on earlier states
or actions.

The task of the agent is to learn a policy, m: S
— A, for selecting its next action a, based on
the current observed state s; that is, (s.) = a.

How shall we specify precisely which policy ™ we would like the agent to learn?

1. One approach is to require the policy that produces the greatest possible
cumulative reward

for the robot over time.

To state this requirement more precisely, define the cumulative value V" (st)

VE(s) =1+ yret + ¥irgz + ...

w .
=Y Vres equ (1)
—
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achievedby following an arbitrary policy n from an arbitrary initial state s; as
follows:

e Where, the sequence of rewards rt+iis generated by beginning at state st and
by repeatedly using the policy n to select actions.

e Here 0 <y < 1 is a constant that determines the relative value of delayed
versus immediate rewards. if we set y = 0, only the immediate reward is
considered. As we sety closer to 1, future rewards are given greater emphasis
relative to the immediate reward.

e The quantity V" (st) is called the discounted cumulative reward achieved
by policy n from initial state s. It is reasonable to discount future rewards

relative to immediate rewards because, in many cases, we prefer to obtain the
reward sooner rather than later.
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2. Other definitions of total reward is finite horizon reward,
Z?:o F+i
Considers the undiscounted sum of
rewards over a finite number A of steps

3. Another approach is average reward
iMoo § Yoig Tt
Considers the average reward per time
step over the entire lifetime of the agent.

We require that the agent learn a policy n
that maximizes V" (s.) for all states s. such a
policy is called an optimal policy and denote
it by n*

n* = argmax V” (s), (Vs) equ (2)

Refer the value function V'*(s) an optimal
policy as V*(s). V*(s) gives the maximum
discounted cumulative reward that the agent
can obtain starting from state s.

Example:

A simple grid-world environment is depicted in
the diagram
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r(s,a) (immediate reward) values

e The six grid squares in this diagram represent six possible states, or locations,
for the agent.

e Each arrow in the diagram represents a possible action the agent can take to
move fromone state to another.

e The number associated with each arrow represents the immediate reward r(s,
a) the agent receives if it executes the corresponding state-action transition

e The immediate reward in this environment is defined to be zero for all state-
action transitions except for those leading into the state labelled G. The state
G as the goal state, and the agent can receive reward by entering this state.

Once the states, actions, and immediate
rewards are defined, choose a value for the
discount factor y, determine the optimal
policy n * and its value function V*(s).
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Let’s choose y = 0.9. The diagram at the

18CS71

il

90 100 OGO

81 90 100

Q(s, a) values

V*(s) values

T I,

— i

—

*__

One optimal policy
bottom of the figure shows one optimal policy

for this setting.

Values of V*(s) and Q(s, a) follow from r(s,

a), and the discount factor y = 0.9. An

optimal policy, corresponding to actions with
maximal Q values, is also shown.

The discounted future reward
from the bottom centre state

IS

0+ vy 100+ y* 0+ y° O+... = 90
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Q LEARNING

How can an agent learn an optimal policy m * for an arbitrary environment?

The training information available to the
learner is the sequence of immediate
rewards r(s,a) for i = 0, 1,2,Given this kind
of training information it is easier to learn a
numerical

evaluation function defined over states and
actions, then implement the optimal policy
in terms of this evaluation function.

What evaluation function should the agent attempt to learn?

One obvious choice is V*. The agent should
prefer state s over state s, whenever V*(s) >
V*(s.), because the cumulative future reward
will be greater from s

The optimal action in state sis the action a
that maximizes the sum of the immediate
reward r(s, a) plus the value V* of the
immediate successor state, discounted by v.

m*(s) = argmax[r(s, a) + y V*(8(s, a))] equ (3)
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The Q Function

The value of Evaluation function Q(s, a)is
the reward received immediately upon
executing action a from state s, plus the value
(discounted by y) of following the optimal
policy thereafter

Q(s,a) =r(s,a) +yV*(8(s, a)) equ (4)

7*(s) = argmax Q(s, a) equ (5)

a

Rewrite Equation (3) in terms of Q(s, a) as
Equation (5) makes clear, it need only

consider each available action ain its current
state s and choose the action that maximizes

Q(s, a).

An Algorithm for Learning Q

e Learning the Q function corresponds to learning the optimal policy.

e The key problem is finding a reliable way to estimate training values for @,
given onlya sequence of immediate rewards r spread out over time. This can
be accomplished through iterative approximation

V*(s) = max Q(s, a’)
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(s, a) =r(s,a) +y max Q(5(s, a), @)

Rewriting Equation
. Q learning algorithm:

Q learning algorithm

For each s, a initialize the table entry Q(s, a) to zero.
Observe the current state s
Do forever:

Select an action a and execute it

Receive immediate reward r
Observe the new state s’
Update the table entry for Q(s, a) as follows:

Q(s, a) < r + y max Q(s', a)
a/

o 5«35
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e Q learning algorithm assuming deterministic rewards and actions. The
discount factory may be any constant suchthat0 <y <1
e Oto refer to the learner's estimate, or hypothesis, of the actual Q function

An lllustrative Example

e To illustrate the operation of the Q learning algorithm, consider a single
action takenby an agent, and the corresponding refinement to Q shown in

below figure
73 100 % 100L
R LT = R
66 66
*81 81
» .
aright .
Initial state: sI Next state: SZ

e The agent moves one cell to the right in its grid world and receives an
immediatereward of zero for this transition.
e Apply the training rule of Equation

Q(s,a) « r +ymax O(s', @)

to refine its estimate Q for the state-action
transition it just executed.

e According to the training rule, the new Qestimate for this transition is the

sum of the received reward (zero) and the highest Qvalue associated with the
resulting state (100), discounted by y (.9).

O(s1, Grignt) < r+y Higx Q(s2, ')

<« 0+ 0.9 max{66, 81, 100}
<~ 90
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Convergence

Will the Q Learning Algorithm converge toward a Q equal to the true Q function?

Yes, under certain conditions.

1. Assume the system is a deterministic MDP.

2. Assume the immediate reward values are bounded; that is, there exists
some positiveconstant c¢ such that for all states s and actions a, | r(s, a)|
<cC

3. Assume the agent selects actions in such a fashion that it visits every
possible state-action pair infinitely often

Theorem Convergence of Q learning for deterministic Markov decision
processes.

Consider a Q learning agent in a deterministic MDP with bounded rewards

Vs, a)|r(s,a)| < c.

The Q learning agent uses the training rule of Equation 0¢.q) «r+ymax 0’ a)
initializes its table Q(s, a) to arbitrary finite values, and uses a discount

factor y such that 0 < y < 1. Let Q,. (s, @) denote the agent’s hypothesis Q(s. a)
following the nth update. If each state-action pair is visited infinitely often, then
Q.(s, a) converges to Q(s, a) as n — oo, for all s, a.

Proof. Since each state-action transition occurs infinitely often, consider consecutive
intervals during which each state-action transition occurs at least once. The proof
consists of showing that the maximum error over all entries in the QO table is reduced
by at least a factor of y during each such interval. @, is the agent’s table of estimated
Q values after n updates. Let A, be the maximum error in Q,; that is

A= n;gxsén(s, a) — Q(s, a)|

Below we use s’ to denote §(s, a). Now for any table entry Q,, (s, a) that is updated
on iteration n + 1, the magnitude of the error in the revised estimate Q,,(s, a) is

10n11(s, @) — Q(s, @)| = |(r +y max Ou(s', @) — (r + y max O(s', a))|
= ylmax O,(s', @) — max Q(s', a")|
< ymax 10a(s". @') — Q(s", @)
< ymax|0,(s",a") — Q(s”, a)|

|Ons1(s, @) — Q(s, a)| < yA,
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The third line above follows from the second line because for any two functions f;
and f> the following inequality holds

|max fi(a) — max f2(a)| < max|fi(@) — f2(a)|

In going from the third line to the fourth line above, note we introduce a new
variable s” over which the maximization is performed. This is legitimate because
the maximum value will be at least as great when we allow this additional variable
to vary. Note that by introducing this variable we obtain an expression that matches
the definition of A,.

Thus, the updated Q,.1(s, a) for any s, a is at most y times the maximum
error in the O, table, A,. The largest error in the initial table, Ay, is bounded because
values of Qg(s,a) and Q(s, a) are bounded for all s, a. Now after the first interval

during which each s, a is visited, the largest error in the table will be at most y A,.
After k such intervals, the error will be at most y*A,. Since each state is visited
infinitely often, the number of such intervals is infinite, and A, — 0 as n — oo.
This proves the theorem.

Experimentation Strategies

The Q learning algorithm does not specify how actions are chosen by the agent.

e One obvious strategy would be for the agent in state sto select the
action a thatmaximizes (s, a), thereby exploiting its current
approximation Q

e However, with this strategy the agent runs the risk that it will overcommit
to actionsthat are found during early training to have high Q values, while
failing to explore other actions that have even higher values.

e For this reason, Q learning uses a probabilistic approach to selecting actions.
Actionswith higher " values are assigned higher probabilities, but every action
is assigned a nonzero probability.

¢ One way to assign such probabilities is

ké(svai)
Zj K Q(s,a;)

P(ails) =
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Where, P(a: | s) is the probability of
selecting action a,, given that the agent is
in state s, and k > 0 is a constant that
determines how strongly the selection
favors actions with high 0 values
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MODULE 5
EVALUATING
HYPOTHESES

MOTIVATION

It is important to evaluate the performance of
learned hypotheses as precisely as possible.

¢ One reason is simply to understand whether to use the hypothesis.
e A second reason is that evaluating hypotheses is an integral component of many
learningmethods.

Two key difficulties arise while learning a hypothesis and estimating its future
accuracy givenonly a limited set of data:

1. Bias in the estimate. The observed accuracy of the learned hypothesis over
the training examples is often a poor estimator of its accuracy over future
examples. Because the learned hypothesis was derived from these examples,
they will typically provide an optimistically biased estimate of hypothesis
accuracy over future examples. This is especially likely when the learner
considers a very rich hypothesis space, enabling it to overfit the training
examples. To obtain an unbiased estimate of future accuracy, test the
hypothesis on some set of test examples chosen independently of the training
examplesand the hypothesis.

2. Variance in the estimate. Even if the hypothesis accuracy is measured over an
unbiased set of test examples independent of the training examples, the
measured accuracy can still vary from the true accuracy, depending on the
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makeup of the particular set of test examples. The smaller the set of test
examples, the greater the expected variance.

ESTIMATING HYPOTHESIS
ACCURACY

Sample Error —
The sample error of a hypothesis with respect
to some sample S of instances drawn from X
is the fraction of S that it misclassifies.

Definition: The sample error (error.(h)) of

hypothesis h with respect to target function f
and data sample S is

1
errors(h) = = Z(S(f(x), h(x))

xeS
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Where n is the number of examples in S, and
the quantity 3(f(x), h(x)) is 1 if f (x) # h(x),
and 0 otherwise.

True Error —

The true error of a hypothesis is the
probability that it will misclassify a single
randomly drawn instance from the distribution
D.

Definition: The true error (errorp(h)) of

errorp(h) = XI:;)[f (x) # h(x)]
hypothesis h with respect to target function f
and distribution D, is the probability that h
will misclassify an instance drawn at random
according to D.

Confidence Intervals for
Discrete—Valued Hypotheses

Suppose we wish to estimate the true error
for some discrete valued hypothesis h, based
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on its observed sample error over a sample S,
where

e The sample S contains n examples drawn independent of one another, and
independentof h, according to the probability distribution D

e n=>30
e Hypothesis h commits r errors over these n examples (i.e., errors (h) = r/n).

Under these conditions, statistical theory
allows to make the following assertions:

1. Given no other information, the most probable value of errorp (h) is errors(h)

2. With approximately 95% probability, the true error errorp (h) lies in the
interval

errorq(h)(1 — errorqe(h
errors(h) £ 1.96 5(h)( s(h))

T
Example:

Suppose the data sample S contains n =
40 examples and that hypothesis h
commits r = 12 errors over this data.

e The sample erroris errors(h) = r/n = 12/40 = 0.30

e Given no other information, true error is errorp (h) = errorg(h), i.e.,
errorp (h) =0.30

e With the 95% confidence interval estimate for errorp (h).

errors(h)(1 — errors(h))

errors(h) + 1.96\/

n

= 0.30 + (1.96 .0.07) = 0.30 + 0.14
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3. A different constant, ZN, is used to calculate the N% confidence interval.
The generalexpression for approximate N% confidence intervals for errorp (h)

errors(h)(1 — errors(h))

n

errors(h) & zx
is

Where,

N%:|50% 68% 80% 90% 95% 98% 99%
zy: |0.67 1.00 1.28 1.64 1.96 2.33 2.58

The above equation describes how to
calculate the confidence intervals, or error
bars, for estimates of errorp (h) that are
based on errorg(h)

Example:
Suppose the data sample S contains n =

40 examples and that hypothesis h
commits r = 12 errors over this data.

e The sample erroris errors(h) = r/n = 12/40 = 0.30
e With the 68% confidence interval estimate for errorp (h).

errors(h) £ 1’00\' errors(h)(1 — errorg(h))
n

= 0.30 % (1.00 .0.07)
= 0.30 % 0.07
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BASICS OF SAMPLING
THEORY

Error Estimation and Estimating
Binomial Proportions

e Collect a random sample S of n independently drawn instances from the
distribution D, and then measure the sample error errors(h). Repeat this
experiment many times, each time drawing a different random sample S; of
size n, we would expect to observe different values for the various errorsi(h),
depending on random differences in the makeup of the various Si. We say that
errorsi(h), the outcome of the i*" such experiment,is a random variable.
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e Imagine that we were to run k random experiments, measuring the random
variables errorsi(h), errors2(h) . . . errorss(h) and plotted a histogram
displaying the frequency with which each possible error value is observed.

e As kgrows, the histogram would approach a particular probability distribution
called the Binomial distribution which is shown in below figure.

0.14 Binomial distribution for n =40, p=0.3

0.12} |
0.1F M

0.08} B

0.06}

0.04F
0.02
(] ] ] ] ] 1 1

0 5 10 15 20 25 30 35 40

P(r)

n!
P(r) =
(r) rl(n —r)

A Binomial distribution is defined by the
probability function

(=)

If the random variable X follows a Binomial

distribution, then:
e The probability Pr(X = r)that Xwill take on the value ris given by P(r)

e Expected, or mean value of X, E[X], is

E[X] = 1_;2'0 iP(i) = np

e Variance of X is
Var(X) = E[(X — E[X])?] = np(1 — p)

e Standard deviation of X, oy, 18
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The Binomial Distribution

Consider the following problem for better
understanding of Binomial Distribution

Given a worn and bent coin and estimate the probability that the coin will turn
up headswhen tossed.

Unknown probability of heads p. Toss the coin mtimes and record the number
of times

rthat it turns up heads.

Estimateof p=r/n
If the experiment were rerun, generating a new set of n coin tosses, we might
expect the number of heads rto vary somewhat from the value measured in
the first experiment, yielding a somewhat different estimate for p.
The Binomial distribution describes for each possible value of r(i.e., from 0 to
n), the probability of observing exactly r heads given a sample of n
independent tosses of a coin whose true probability of heads is p.

The general setting to which the Binomial

distribution applies is:

1.

There is a base experiment (e.g., toss of the coin) whose outcome can be
described by arandom variable Y. The random variable Y can take on two
possible values (e.g., Y =1 if heads, Y = 0 if tails).

2. The probability that Y = 1 on any single trial of the base experiment is given

3.

by some constant p, independent of the outcome of any other experiment. The
probability that Y

= 0 is therefore (1 - p). Typically, p is not
known in advance, and the problem is to
estimate it.

A series of n independent trials of the underlying experiment is performed
(e.g., n independent coin tosses), producing the sequence of independent,
identically distributed random variables Y1, Y2, . . ., Yn. Let R denote the

e n ]
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number of trials for which Yi = 1 inthis series of n experiments

4. The probability that the random variable R will take on a specific value r (e.g.,
the probability of observing exactly r heads) is given by the Binomial
distribution

Pr(R=7r)=

n!

Am—n P4=P" e
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Mean, Variance and Standard
Deviation

The Mean (expected value) is the average of
the values taken on by repeatedly sampling
the random variable

Definition: Consider a random variable Y
E[Y] =) yPr(¥ = y)
i=]

that takes on the possible values y,, . . . V..
The expected value (Mean) of Y, E[Y], is

The Variance captures how far the random
variable is expected to vary from its mean
value.

Definition: The variance of a random variable Y, Var[Y], is

Var[Y] = E[(Y — E[Y])?]

The variance describes the expected squared

error in using a single observation of Y to estimateits mean E[Y].

The square root of the variance is called the standard deviation of Y, denoted
Oy
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oy =/ E[(Y — E[Y])?]

Definition: The standard deviation of a
random variable Y, o, is

jon, then the

In case the random variable Y i
Mean, Varianceand standard deviation are given by

E[Y]=np
Var[Y] = np(1 — p)
oy = v/np(l — p)




Artificial Intelligence and Machine Learning 18CS71

Estimators, Bias, and Variance

Let us describe error.(h) and error.,(h)

errors(h) = %

errorp(h) = p
using the terms in Equation (1) defining

the Binomial distribution. We then have
Where,

e nis the number of instances in the sample S,
e ris the number of instances from S misclassified by h
e pis the probability of misclassifying a single instance drawn from D

e Estimator:
errors(h) an estimator for the true error errorD(h): An estimator is any

random variable usedto estimate some parameter of the underlying population
from which the sample is drawn
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e Estimation bias: is the difference between the expected value of the
estimator and the truevalue of the parameter.

Definition: The estimation bias of an estimator Y for an arbitrary parameter p

E[Y]—p
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